dc.contributor.author
Chiang, Li-Yang
dc.date.accessioned
2018-06-07T23:15:58Z
dc.date.available
2010-07-08T10:27:33.459Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/10265
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-14463
dc.description
1 INTRODUCTION 1.1 Mechanosensation 1.2 Sensory mechanotransduction 1.3
Molecular nature of sensory mechanotransduction in different systems 1.3.1
Invertebrate mechanoreceptor transduction model in Caenorhabditis elegans and
Drosophila melanogaster 1.3.2 Vertebrate hair cell mechanotransduction model
1.3.3 Mammalian sensory mechanotransduction model 1.4 Objectives 2 MATERIALS
AND METHODS 2.1 Materials 2.1.1 Technical equipments 2.1.2 Analytical Software
2.1.3 Chemicals and reagents 2.1.4 Solutions and buffers for general use 2.1.5
Culture media 2.1.6 Purified Proteins, Antibodies and Enzymes 2.1.7
Consumables 2.1.8 Animals 2.2 Methods 2.2.1 Molecular biology 2.2.2 Cell
cultures 2.2.2.1 Cultivation of afferent sensory neurons and efferent
sympathetic Neurons 2.2.2.2 Culture of mouse 3T3 cells 2.2.2.3 Culture of
SCC25 2.2.2.4 Culture of mouse kerationocytes 2.2.2.5 Co-culture and
conditioned-matrix culture systems 2.2.3 Protein chemistry 2.2.3.1
Immunostaining of cultivated neurons 2.2.3.2 ECM Protein isolation 2.2.3.3
SDS-PAGE 2.2.3.4 Western blotting 2.2.3.5 Mass Spectrometry 2.2.4
Electrophysiology 2.2.5 Electron microscopy 2.2.6 Microcontact printing 3
RESULTS 3.1 Identification of an extracellular tether required for
mechanosensitive channel gating 3.1.1 Mechanotransduction and the tether model
3.1.2 Manipulation of the tether and its biochemical properties 3.1.3 TEM
quantification of identifiable protein tethers 3.1 Summary 3.2 Role of
extracellular matrix in sensory mechanotransduction 3.2.1 Co-culture system
and reproduction of sensory nerve ending at cutaneous layer 3.2.2 Modulation
of mechanically activated current on keratinocyte matrix 3.2 Summary 3.3
Identification of Laminin-5 for a mechanosensitivity modulation 3.3.1
Proteomic analysis of ECM proteins from laminin, fibroblast and keratinocyte
3.3.2 Laminin-5 can partially reproduce keratinocyte mechanosensitivity
modulation 3.3.3 Laminin-5 is potent for mechanosensitivity modulation 3.3.4
Laminin-5 specifically modulates putative mechanoreceptors mechanosensitivity
3.3 Summary 3.4 Characterizatiion of Laminin-5 mechanosensitivity modulation
3.4.1 Mechanosensitivity modulation is not attributed to absence of putative
mechanoreceptors 3.4.2 An extracellular tether required for mechanosensitive
channel gating is ablated in presence of laminin-5 3.4.3 Laminin-5 locally
modulates mechanosensitivity 3.4.4 Laminin-5 does not act through integrin-
mediated pathway 4 DISCUSSION 4.1 Pharmacological manipulation of the
extracellular tether reveals its biochemical properties 4.2 Transmission
electron microscopic study reveals correlation between a subtype of protein
filaments and mechanically activated slowly adapting current 4.3 Extracellular
matrix proteins are important for mechanosensitive channel gating 4.4
Laminin-5 plays an inhibitory role in putative mechanoreceptor channel gating
4.5 Laminin-5 acts as a mechanosensitivity inhibitory factor by disassemblying
binding of the tether to the substrate 4.6 Laminin-5 inhibition takes place
only if sensory neurite has contact with extracellular protein substrate in
which Integrin- mediated mechanism is not involved 4.7 Laminin-5 inhibition
for mechanosensitivity is independent of its inhibition for neurite morphology
and might play a role in regulating sensory tissue function in the epidermis
4.8 Conclusions 5 REFERENCES 6 APPENDIX 6.1 List of Figures 6.2 List of Tables
dc.description.abstract
The skin is our largest sensory organ and required for the perception of the
outside world using our sense of touch and pain. The underlying mechanism for
sensory mechanotransduction at the molecular level is poorly understood. In
sensory hair cells of the inner ear, extracellular protein filaments called
tip links tethering mechanosensitive ion channels between stereocilia are
required for mechanotransduction. In this study, we showed that a protein
link, which is sensitive to the endopeptidases subtilisin and blisterase is
necessary for the gating of mechanosensitive rapidly adapting (RA) currents in
dorsal root ganglia (DRG) neurons. Using transmission electron microscopy
(TEM), we demonstrated that a protein filament with a length of ~100 nm is
synthesized by sensory neurons and may link mechanosensitive ion channels in
sensory neurons to the extracellular matrix. This was the first evidence to
show that an extracellular mechanotransducer link exists and that it maybe
essential for normal mechanotransduction. In this study we also investigated
the role of the extracellular matrix (ECM) in sensory mechanotransduction. It
was found that keratinocyte-derived ECM can profoundly inhibit the expression
of RA current and delay gating of the mechanosensitive slowly adapting (SA)
currents. We then identified a skin-derived protein laminin-332 as responsible
for the inhibition of RA current expression but not for delaying SA current
gating on keratinocytes-derived matrix. It was shown that laminin-332 is a
potent inhibitory factor selectively for inhibition of RA current expression
and TEM results showed that this can be attributable to a lack of tether
binding to the substrate, which is required for RA current gating.
Microcontact printing and biochemical experiments revealed that laminin-332 is
a local inhibitory factor not only for mechanosensitivity but also for neurite
outgrowth in a manner independent of integrin. Our data suggests that
laminin-332 inhibition of mechanosensitivity and of neurite outgrowth are
likely two independent scenarios.
de
dc.description.abstract
Die Haut ist das grösste sensorische Organ des Menschen. Sie ist notwending
für die Wahrnehmung unserer Umgebung durch Tasten und Schmerzempfinden. Über
die zugrundeliegende sensorische Mechano- transduktion ist auf molekularer
Ebene noch relativ wenig bekannt. In sensorischen Haarzellen des Innenohrs
sind extrazelluläre Proteinfilamente, auch genannt „tip links“, zur Funktion
der Mechanotransduktion notwendig. Diese Filamente verbinden mechanosensitive
Kanäle zwischen den Stereocilia wie ein Spannseil. In diesem Projekt wurde
gezeigt, dass ein Protein-link, der sensitiv gegenüber den Endopeptidasen
Subtilisin und Blisterase ist, für mechanosensitive Ströme des RA Typs
(RA=rapidly adapting) in DRG Neuronen notwendig ist. Mittels
Transmissionselektronenmikroskopie (TEM) wurde beobachtet, dass sensorische
Neuronen ein Protein-Filament mit einer Länge von ~100nm synthetisieren,
welches mechanosensitive Inonenkanäle mit der extrazellulären Matrix verlinken
könnte. Dies ist der erste Nachweis der Existenz eines extrazellulären
Mechanotransduktions-Links, der essentiell für eine normale
Mechanotransduktion sein könnte. In diesem Projekt wurde weiterhin die Rolle
der extrazellulären Matrix (ECM) in sensorischer Mechanotransduktion
untersucht. Vorherige Untersuchungen ergaben, dass von Keratinozyten
abstammende ECM die mechanosensitiven RA-Ströme inhibiert und SA (slowly
adapting)-Ströme verzögert. Wir konnten das Protein Laminin-332
identifizieren, das für die Inhibition der RA-Ströme, nicht aber für die
Verzögerung der SA-Ströme auf Keratinozyten-ECM verantwortlich ist.
Laminin-332 ist ein wirksamer selektiver Inhibitor des RA-Stroms und unsere
TEM Ergebnisse zeigten, dass diese Inhibition durch eine fehlende Verbindung
zum für die Erzeugung von RA-Strömen notwendigen Substrat verursacht werden
könnte. Durch Microcontact Printing und biochemische Experimente konnte
gezeigt werden, dass Laminin-332 ein lokaler Inhibitor nicht nur für
Mechanosensivität ist, sondern Laminin-332 inhibiert ebenfalls das
Axonwachstum unabhängig von Integrinen. Unsere Ergebnise sprechen dafür, dass
die Inhibition der Mechanosensitivität durch Laminin-332 und die Inhibition
des Axonwachstums zwei unterschiedliche Szenarien sind.
de
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject
Extracellular matrix
dc.subject
Mechanotransduction
dc.subject.ddc
500 Naturwissenschaften und Mathematik::570 Biowissenschaften; Biologie
dc.title
The tether model and the role of skin-derived laminin-332 (laminin-5) in
sensory mechanotransduction
dc.contributor.firstReferee
Prof. Dr. Fritz G. Rathjen
dc.contributor.furtherReferee
Prof. Dr. Gary R. Lewin
dc.date.accepted
2009-07-09
dc.date.embargoEnd
2010-07-08
dc.identifier.urn
urn:nbn:de:kobv:188-fudissthesis000000015423-5
dc.title.translated
Das Ankermodell und die Rolle des Hautlaminins 332 (Laminin 5) in der
sensorischen Mechanotransduktion
de
refubium.affiliation
Biologie, Chemie, Pharmazie
de
refubium.mycore.fudocsId
FUDISS_thesis_000000015423
refubium.mycore.derivateId
FUDISS_derivate_000000006925
dcterms.accessRights.dnb
free
dcterms.accessRights.openaire
open access