dc.contributor.author
Subramanian , Santosh Krishna
dc.date.accessioned
2018-06-07T22:15:23Z
dc.date.available
2011-06-10T12:39:48.670Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/9054
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-13253
dc.description
Table of contents 3 1 Acknowledgements 8 2 Abbreviations 10 3 Summary 12 4
Zusammenfassung 14 5 Introduction 16 5.1 Etiology of colon cancer 16 5.1.1
Sporadic colon carcinogenesis 16 5.1.2 Hereditary colon cancer 23 5.1.3
Colitis-associated colon cancer 24 5.2 Colon cancer chemoprevention 25 5.2.1
Use of NSAIDs and selective cyclooxygenase inhibitors 26 5.2.2 iNOS inhibitors
26 5.2.3 5-Aminosalicylic acid (5-ASA) 26 5.2.4 Ursodeoxycholic acid (UDCA) 27
5.3 The crosstalk between MAP-kinase & PI3-kinase pathways 30 5.4 Irs-1 and
proliferation 30 6 Objectives 32 7 Materials and Methods 33 7.1 Experiments
with mice 33 7.1.1 Animal handling, water and diet 33 7.1.2 DSS-water cycle 33
7.1.3 BrdU incorporation in mice 33 7.1.4 Isolation of murine colonic
epithelial cells 33 7.1.5 Immunohistochemistry: preparation of sections and
staining 34 7.2 Molecular Biology 34 7.2.1 RNA isolation, purification and
quality control 34 7.2.2 Microarray experiment 36 7.2.3 Real-time PCR 38 7.2.4
Bacterial transformation 39 7.2.5 Plasmid isolation 40 7.2.6 Luciferase assay
40 7.3 Cell biology 42 7.3.1 Preparation of UDCA solution 42 7.3.2 Measurement
of cell proliferation 42 7.3.3 Flourescence activated cell sorting (FACS) 44
7.3.4 Determination of senescence 45 7.3.5 Visualisation of nuclei by DAPI
staining 46 7.3.6 Transient transfections 46 7.3.7 Generation of stable clones
47 7.3.8 Suppression of ERK1 or ERK2 protein 48 7.3.9 Inhibition of ERK
phosphorylation 48 7.3.10 Suppression of Irs-1 protein 49 7.3.11 Preparation
of cell lysate and western blotting 49 7.3.12 Polyacrylamide gel
electrophoresis and Western blotting 50 7.3.13 Immunofluorescence staining of
IEC-6 cells 50 8 Results 55 8.1 What are the effects of UDCA on the colonic
epithelium of mice with DSS-colitis? 55 8.1.1 Set-up of the experiment: mice
with colitis 55 8.1.2 Effect of DSS-colitis on colonic crypt length and
proliferation 55 8.1.3 Effect of UDCA on proliferation of inflamed epithelium
56 8.1.4 Genes which are differentially expressed due to DSS-colitis 57 8.1.5
Effect of UDCA treatment on gene expression in DSS-colitis mice 58 8.1.6
Validation of the microarray data of the DSS-colitis mice 61 8.2 What are the
effects of UDCA treatment on the normal colonic epithelial cells in vivo? 62
8.2.1 Set up of the experiment 62 8.2.2 Inhibition of proliferation of normal
colonic epithelial cells by UDCA 62 8.2.3 The proliferation inhibition was
dose-dependent 63 8.2.4 UDCA influenced expression of proliferation-associated
genes in murine colonic epithelial cells 64 8.3 What are the effects of UDCA
treatment in vitro? 68 8.3.1 What are the effects of UDCA treatment on colon
cancer cells in vitro? 69 8.3.2 Effect of UDCA on colon cancer cell
proliferation 69 8.3.3 Effect on UDCA treatment on cell cycle progression 70
8.3.4 Comparison of changes in gene expression caused by UDCA in mice with
that in colon cancer cell lines 71 8.3.5 Role of Gbp2 in antiproliferative
effects of UDCA 73 8.3.6 Investigation of Tcf4 in HCT116 cell line 76 8.4 What
are the effects of UDCA treatment on the nontransformed intestinal epithelial
cells in vitro? 79 8.4.1 Effect of UDCA on proliferation of IEC-6 cells 80
8.4.2 Effect of UDCA on MTT to formazan conversion in IEC-6 cell line 80 8.4.3
Expression of UDCA target genes in IEC-6 cells 82 8.4.4 Investigation of
apoptosis in IEC-6 cells treated with UDCA 82 8.4.5 Investigation of
senescence in IEC-6 cells treated with UDCA 83 8.4.6 UDCA treatment resulted
into a change in cell cycle distribution 84 8.4.7 Effect of UDCA on Irs-1
protein expression and ERK phosphorylation 85 8.4.8 Effect of UDCA on
localization of ERK kinase 86 8.4.9 Effect of UDCA on IGF-1- and EGF-induced
proliferation 87 8.4.10 Effect of UDCA on duration of ERK phosphorylation 87
8.4.11 High phosphorylation of ERK1/ERK2 coincides with cell cycle delay 89
8.4.12 Role of ERK in basal or IGF-1- or EGF-induced proliferation 90 8.4.13
Abrogation of UDCA effects by inhibition of MEK1 kinase 91 8.4.14 Abrogation
of UDCA effects by suppressing ERK protein 92 8.4.15 Effect of Irs-1 on basal
and IGF-1- or EGF-induced proliferation 94 8.4.16 Effect of Irs-1
overexpression on cell proliferation 95 8.4.17 Regulation of Irs-1
transcription by ERK1 and ERK2 96 8.4.18 Transcriptional upregulation of p21
by high ERK-phosphorylation 97 8.4.19 Regulation of p21 transcription by UDCA
97 8.4.20 Regulation of p21 expression by UDCA in vivo 98 8.4.21 Suppression
of p21 decreases proliferation inhibition due to UDCA 99 9 Discussion 101 9.1
Inflammation increases epithelial cell proliferation 101 9.2 UDCA reduces
epithelial cell hyperproliferation in mice with DSS-colitis 101 9.3
Inflammation-associated alterations of gene expression 102 9.4 UDCA suppresses
inflammation-associated alterations of gene expression 102 9.5 UDCA inhibits
epithelial cell proliferation in normal mice 103 9.6 UDCA suppresses
proproliferative genes in normal mice 103 9.7 UDCA inhibits proliferation of
human colon cancer cells in vitro 104 9.8 Changes in gene expression caused by
UDCA in colon cancer cells are different from those found in mice 104 9.9
Decrease in Tcf4 expression caused by UDCA treatment does not contribute to
proliferation inhibition in colon cancer cells 104 9.10 UDCA inhibits the
proliferation in nontransformed rodent epithelial cells in vitro 105 9.11 UDCA
treatment suppresses the expression of proproliferative genes in
nontransformed rodent epithelial cell line IEC-6 105 9.12 Decrease in cell
proliferation was due to cell cycle slow-down and not due to apoptosis or
senescence 106 9.13 MTT assay is not the correct readout for cell
proliferation in case of IEC-6 cells treated with UDCA 107 9.14 High and
persistent phosphorylation of ERK due to UDCA treatment decreased FCS- or EGF-
or IGF-1-induced proliferation 107 9.15 Suppression of ERK1 but not of ERK2
abrogated the proliferation-inhibition caused by UDCA treatment 108 9.16 UDCA
transcriptionally suppresses Irs-1 which is required for basal- or EGF- or
IGF-1-driven proliferation 109 9.17 ERK regulates Irs-1 transcription 109 9.18
UDCA treatment increases p21 expression which is ERK1 dependent 110 10
Conclusions 111 11 Perspectives 112 12 References 113 13 Supplementary tables:
Affymetrix Microarray evaluation 122 14 Curriculum Vitae 148 15 Publications
149
dc.description.abstract
The original objective of this work was to clarify the mechanism of the
chemopreventive action of ursodeoxycholic acid (UDCA) in a DSS-colitis mice
model. The secondary question was how UDCA acts upon the normal epithelium.
Both DSS-colitis mice and normal mice were fed with diet containing UDCA at
different concentrations for 86 days and 21 days respectively. The RNA from
colonic epithelial cells was used for a microarray experiment to identify
proliferation-associated genes. The changes in gene expression were confirmed
by real time RT-PCR. The effect on proliferation was assayed by
immunohistochemical staining of the colonic sections for Ki-67-expression and
BrdU incorporation. The mechanism was investigated in detail in an in vitro
model using IEC-6 cell line. DSS-colitis increased the crypt length and the
number of proliferating cells per crypt. The treatment of DSS-colitis mice
with UDCA decreased the crypt length and the number of proliferating
epithelial cells per crypt. Proliferation promoting genes like Gbp2 were
identified which were upregulated in DSS-colitis mice and were brought to
normal expression levels by UDCA treatment. Treatment of normal mice with UDCA
did not change the crypt length but resulted in a decrease of the number of
proliferating cells per crypt and decrease in the expression of many pro-
proliferative genes like Tcf4, Gbp2, Klf5, Irs-1, Il-15, Ghr and Flot2. UDCA
treatment of colon cancer cells decreased proliferation and caused
differential expression of genes identified in mice. The changes in gene
expression in colon cancer cells were different from that observed in the
mice. By contrast, proliferation of the nontransformed intestinal epithelial
cell line IEC-6 was dose dependently inhibited by UDCA and the genes
upregulated or downregulated in mice were similarly regulated in IEC-6 cell
line. In IEC-6 cell line, Irs-1 mRNA and protein expression was strongly
suppressed which decreased proliferation. UDCA treatment of IEC-6 cells caused
high and persistent phosphorylation of ERK which was associated with an
inhibition of EGF- or IGF-1-induced proliferation, a slow progress through the
cell cycle, decreased uptake of BrdU, transcriptional suppression of Irs-1 and
transcriptional upregulation of p21 mRNA and protein expression. Furthermore
suppression of ERK1 but not of ERK2 or inhibition of phosphorylation of
ERK1/ERK2 by pharmacological inhibitors, led to an increase in expression of
Irs-1 and decrease in expression of p21. The inhibition of ERK-phosphorylation
or suppression of ERK1 protein but not ERK2 protein abrogated the
antiproliferative effects of UDCA. It was concluded that UDCA inhibits the
proliferation of normal intestinal epithelial cells by causing high and
persistent ERK phosphorylation wherein an ERK1-dependent transcriptional
suppression of Irs-1 and upregulation of p21 contributes to the decrease of
cell proliferation.
de
dc.description.abstract
Zielsetzung: In den Vorarbeiten der AG Hanski wurde die Inhibition der
kolitisbedingten Kolonkarzinogenese durch Gabe von Ursodesoxycholsäure (UDCA)
im murinen Modell der DSS-Kolitis festgestellt. Das Ziel der vorliegenden
Arbeit war es, die Mechanismen der Wirkung von UDCA auf intestinale Zellen in
vivo und in vitro zu untersuchen. Vorgehensweise: DSS-Kolitis-Mäuse sowie
normale Mäuse wurden 3 Monate bzw. 3 Wochen mit einer Standarddiät mit oder
ohne UDCA Supplementierung (0,4%) gefüttert. Die Kolonepithelzellen wurden
isoliert, die Genexpression wurde einer Affymetrix-Array Analyse unterzogen.
Die Validierung der Genexpressionsveränderungen erfolgte mit RT-PCR. Die
Proliferation in vivo wurde durch den immunhistochemischen Nachweis des Ki-67
Proteins bzw. des eingebauten BrdUs verfolgt. Die in vivo detektierten
potenziellen Mechanismen wurden anhand von humanen Kolonkarzinomzelllinien
sowie einer nichttransformierten intestinalen Rattenzelllinie IEC-6 im Detail
untersucht. Ergebnisse: Die anhaltende DSS-Kolitis bewirkte die Erhöhung der
Anzahl der proliferierenden Zellen pro Krypte und eine Kryptenverlängerung.
Die dreimonatige UDCA-Behandlung von DSS-Kolitis-Mäusen reduzierte die Anzahl
der proliferierenden Zellen pro Krypte und die Kryptenlänge. Die dreiwöchige
Behandlung der normalen Mäuse hatte ebenfalls eine Inhibition der epithelialen
Proliferation jedoch ohne Kryptenverlängerung zur Folge. Mehrere Gene, wie
Gbp2, Socs3, CcnK, die potenziell an Proliferation beteiligt sind, werden bei
der Entzündung überexprimiert und durch die Behandlung mit UDCA auf ein
niedrigeres Niveau gebracht. Im normalen Gewebe bewirkt die UDCA Behandlung
ebenfalls die Suppression von potenziell an der Proliferation beteiligten
Genen wie Tcf4, Gbp2, Klf5, Irs-1, Il-15, Ghr und Flot2. Die detaillierte
Untersuchung der Rolle von zwei Genen, Gbp2 sowie TCF4 in humanen
Kolonkarzinomzellen brachte jedoch keine schlüssigen Ergebnisse zu ihrer
Beteiligung an der UDCA-vermittelten Proliferationsinhibition. Dies wurde u.a.
darauf zurückgeführt, dass das Gesamtgenexpressionsprofil der humanen
Kolonkarzinomzelllinien nach UDCA Behandlung von dem murinen
Genexpressionsprofil unterschiedlich war. Demgegenüber entsprachen die UDCA-
bedingten Genexpressionsveränderungen in der nichttransformierten intestinalen
Rattenzelllinie IEC-6 den Veränderungen die im murinen Kolonepithel beobachtet
wurden. Diese Zelllinie eignete sich somit sehr gut als Modell zur
detaillierten Untersuchung der Wirkungsmechanismen der UDCA in vitro. UDCA
inhibierte in der IEC-6 Zelllinie das proproliferative Signal von EGF sowie
von IGF-1. Dies war mit einer starken und anhaltenden Phosphorylierung der
ERK1/ERK2 Kinasen sowie mit der Suppression des Irs-1 Proteins verbunden, das
an der Vermittlung des IGF-1 Signals beteiligt ist. Durch Anwendung von ERK
Inhibitoren sowie durch die selektive Suppression von ERK1 bzw. ERK2 mittels
siRNA konnte gezeigt werden, dass die antiproliferative Wirkung von UDCA durch
ERK1 und nicht durch ERK2 vermittelt ist. Dauerhaft phosphoryliertes ERK
potenziert die Transkription des p21WAF1/cip1 Proteins, das zur
Proliferationsinhibition beiträgt. Darüber hinaus supprimiert die
hochphosphorylierte ERK1 Kinase die Transkription des Irs-1 Proteins, wodurch
das proproliferative IGF-1- Signal inhibiert wird. Schlussfolgerung:
Zusammenfassend ist die durch UDCA Behandlung ausgelöste hohe und anhaltende
ERK1 Phosphorylierung die entscheidende Veränderung, welche die
transkriptionellen Alterationen von Regulatormolekülen (p21 Hochregulation,
Irs-1 Suppression) auslöst und Zellzyklusverlangsamung sowie die Inhibition
der EGF- und IGF-1-Signalwege zur Folge hat.
de
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject
Ursodeoxycholic acid
dc.subject
chemoprevention
dc.subject
Persistent ERK phosphorylation
dc.subject.ddc
500 Naturwissenschaften und Mathematik::540 Chemie
dc.title
Investigation of the mechanism of action of ursodeoxycholic acid on normal or
inflamed epithelia in vivo and on the intestinal epithelial cells in vitro
dc.contributor.contact
santosh.krishna@gmail.com
dc.contributor.firstReferee
Prof.Dr.Burghardt Wittig
dc.contributor.furtherReferee
Prof.Dr.Christoph Hanski
dc.date.accepted
2011-04-29
dc.identifier.urn
urn:nbn:de:kobv:188-fudissthesis000000022660-3
dc.title.translated
Untersuchung des Wirkungsmechanismus von Ursodeoxycholsäure auf normale oder
entzündete Epithelien in vivo und in der intestinalen Epithelzellen in vitro
de
refubium.affiliation
Biologie, Chemie, Pharmazie
de
refubium.mycore.fudocsId
FUDISS_thesis_000000022660
refubium.mycore.derivateId
FUDISS_derivate_000000009426
dcterms.accessRights.dnb
free
dcterms.accessRights.openaire
open access