dc.contributor.author
Castro Villela, Víctor Manuel
dc.date.accessioned
2018-06-07T21:52:27Z
dc.date.available
2011-12-15T10:19:08.591Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/8543
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-12742
dc.description
1\. Introduction
.......................................................................................................................................
1 1.1 Epithelia
...................................................................................................................................
1 1.1.1 Endothelia
............................................................................................................................
1 1.1.2 The blood brain barrier
........................................................................................................
1 1.2 The epithelial transporting phenotype
.....................................................................................
2 1.2.1 The Epithelial two membrane model
...................................................................................
2 1.3 The tight junctions
...................................................................................................................
3 1.3.1 Molecular composition of the TJ
..........................................................................................
5 1.3.2 Transmembranal proteins
....................................................................................................
6 1.3.3 Peripheral proteins
............................................................................................................
10 1.4 The tight junctions of the blood-brain barrier under pathological
conditions ......................... 11 1.4.1 Hypoxia and Cellular NADH
content
.................................................................................
12 1.4.2 Behavior of occludin in response to the cellular redox conditions
..................................... 13 1.5 Hypothesis and objectives of this
work
.................................................................................
13 2 Material and methods
.....................................................................................................................
16 2.1 Cell culture
.............................................................................................................................
16 2.1.1 General growing conditions
...............................................................................................
16 2.1.2 Hypoxic conditions
.............................................................................................................
16 2.1.3 Cell storage, freezing and thawing
....................................................................................
16 2.1.4 Transfection
.......................................................................................................................
17 2.1.5 Clonal selection
.................................................................................................................
17 2.2 Cell imaging.
..........................................................................................................................
18 2.2.1 Laser Scanning Confocal Microscopy
...............................................................................
18 2.2.2 Fluorescence Resonance Energy Transfer
....................................................................... 20
2.2.3 Freeze-Fracture Electron Microscopy
...............................................................................
26 2.3 Molecular Biology
..................................................................................................................
26 2.3.1 DNA propagation
...............................................................................................................
26 2.3.2 Amplification and purification of DNA
................................................................................
27 2.3.3 DNA
quantitation................................................................................................................
27 2.3.4 Polymerase Chain Reaction
..............................................................................................
27 2.3.5 DNA electrophoresis and visualization
..............................................................................
29 2.3.6 Generation of electrocompetent E. coli DH5 cells
.......................................................... 30 2.4 Protein
analysis
.....................................................................................................................
30 2.4.1 Western Blot
......................................................................................................................
30 2.4.2 Fluorescent Polyacrylamide Gel Electrophoresis
.............................................................. 31 2.5
Spectroscopy and spectrophotometry
...................................................................................
32 2.5.1 Determination of NADH consumption by ultraviolet-visual spectroscopy
......................... 32 2.6 Image analysis
.......................................................................................................................
32 2.6.1 Microscopical imagery
.......................................................................................................
32 2.6.2 Quantitation of the membrane and intracellular occludin pools
........................................ 33 2.6.3 Fluorescence profiling
.......................................................................................................
33 2.6.4 Electrophoresis imagery
....................................................................................................
33 2.7 In-silico analysis
....................................................................................................................
33 2.7.1 protein analysis
..................................................................................................................
33 2.7.2 Molecular modeling
...........................................................................................................
34 2.8 Statistics
................................................................................................................................
37 2.9 Reagents
...............................................................................................................................
37 2.10 Materials and equipment
.......................................................................................................
39 3 RESULTS
.......................................................................................................................................
42 3.1 Occludin is expressed in the plasma membrane of HEK 293 cells
....................................... 42 3.1.1 Expression pattern of YFP-
Occludin in HEK-293
cells...................................................... 42 3.1.2 YFP-
Occludin is distributed apically at the cell-cell contacts
............................................ 44 3.2 Occludin forms dimers that
are sensitive to reduction
.......................................................... 44 3.3 Hypoxia
disorganizes the expression pattern of occludin
..................................................... 46 3.3.1 Cellular
content of NADH during hypoxia
.......................................................................... 46
3.3.2 Expression of YFP-Occludin in Hypoxic HEK-293 cells
.................................................... 47 3.3.3 Effect of TNF-α
and IFN- in the expression pattern of YFP-Occludin
.............................. 48 3.4 The C-terminus of occludin forms a
disulfide bridge .............................................................
51 3.5 The membranal localization of occludin correlates with its ability to
dimerize ...................... 53 3.5.1 YFP-OccludinC409A does not associate
with YFP-OccludinWT ............................................ 54 3.6 The
interaction of occludin with ZO-1 is sensitive to the ability of occludin to
dimerize. ....... 55 3.6.1 ZO-1 CFP is expressed mainly in the cytosol of
HEK-293 cells ....................................... 55 3.6.2 ZO-1 CFP
reaches the plasma membrane if coexpressed with YFP-Occludin ................
55 3.6.3 Hypoxia dissociates ZO1-CFP and YFP-OccludinWT
........................................................ 57 3.6.4 YFP-
OccludinC409A is unable to recruit ZO1-CFP to the plasma membrane
..................... 58 3.7 The dimeric assembly of the occludin coiled-coil
domain. .................................................... 58 3.8 Occludin
docks into a notch in the SH3-Hinge-GuK unit of ZO-1
......................................... 60 3.9 Occludin forms strands if it
can dimerize and only in presence of ZO-1 ............................... 64
3.10 The C-terminus of occludin is predicted to have structural similarities
to oxidoreductases. . 65 3.10.1 Cell extracts containing YFP-OccludinWT have
an increased NADH to NAD+ conversion rate. 69 3.11 Occludin interacts with
claudin-5 in hypoxic and normoxic conditions
.................................. 70 4 Discussion
......................................................................................................................................
72 4.1 Experimental approach
..........................................................................................................
72 4.1.1 quantum corrected lambda scanning fluorescence resonance energy
transfer ............... 74 4.1.2 Fluorescent polyacrylamide gel
electrophoresis (F-PAGE)............................................... 75 4.2
Expression of occludin in normoxia and hypoxia
.................................................................. 76 4.2.1
changes on occludin dimerization
.....................................................................................
77 4.2.2 Biological relevance of the occludin cytosolic disulfide bond
............................................ 78 4.3 The interaction of
occludin with ZO-1 is redox-sensitive
....................................................... 79 4.3.1 The dimeric
coiled-coil domain of occludin
........................................................................ 79
4.3.2 The occludin / ZO-1 interaction model
..............................................................................
80 4.4 Biological implications
...........................................................................................................
82 4.4.1 The regulatory region of occludin
......................................................................................
82 4.4.2 Occludin, the metabolic sensor of the TJ
.......................................................................... 83
4.5 The NADH oxidase activity of occludin
.................................................................................
84 4.6 Conclusive remarks
...............................................................................................................
86 5 References
.....................................................................................................................................
88 6 Apendix
........................................................................................................................................
100 6.1 Amino acid sequence of human occludin
............................................................................
100 6.2 Amino acid sequence of the SH3-Hinge-GuK unit of human ZO-1
..................................... 100 6.3 Comparison of FRET efficiencies
between conventional AP-FRET and q-FRET ............. 101 6.4 Surface
electronegativity of the dimeric coiled-coil domain of occludin
.............................. 102 6.5 Surface electronegativity of the SH3
-Hinge-GuK unit of ZO-1 ............................................ 102 6.6
Predicted dimeric assemblies of the occludin coiled-coil domain
....................................... 103
dc.description.abstract
The blood-brain barrier is the interface between the blood and the central
nervous system; one of its key elements is the brain capillary endothelium.
The paracellular cleft between the brain capillary endothelial cells is sealed
by the tight junctions (TJ), protein complexes that restrict the free
diffusion of water and water soluble molecules across that space. The
intracellular zonula occludens protein 1 (ZO-1) and the transmembranal and TJ-
specific protein occludin were the first TJ molecules identified. The
structure and physiology of both proteins is not well understood; ZO-1 is
considered the scaffolding protein of the TJ, and occludin has been assumed to
play a regulatory role on the TJ behavior. Based on in-vitro studies using
recombinant fragments of occludin, a redox sensitive function of occludin was
hypothesized. Here, it is shown that occludin dimerizes in a redox sensitive
manner by forming an intracellular disulfide bridge involving the cysteine 409
(in the C-terminal domain of human occludin). The dimerization is found to be
needed for the recruitment of ZO-1 to the plasma membrane. When expressed in a
TJ-free cell system, occludin reached the cell membrane and interacted in
trans with itself. When coexpressed with ZO-1, occludin formed membranal
strands and helped ZO-1 to reach the plasma membrane. Under hypoxia or TNF-α
induced redox stress, occludin did not dimerize, lost its ability to interact
in trans, dissociated from ZO-1, and both proteins were delocalized from the
plasma membrane. The substitution of the cysteine 409 for alanine (C409A)
prevented the dimerization of occludin and the recruitment of ZO-1 to the cell
membrane. Although the occludin C409A mutant reached the cell membrane, it did
not recruit ZO-1 or formed strands. Based on the experimental data a
structural model for the redox-sensitive dimerization of occludin and the
interaction of occludin and ZO-1 was proposed. This work demonstrates how the
cellular expression and interplay of occludin and ZO-1 are redox sensitive.
After the onset of hypoxia, changes in the intracellular redox potential
hinder the interaction of occludin with ZO-1, a novel mechanism that
contributes to the regulation of TJ. Thus, this work contributes to a better
understanding of the function and regulation of TJ in the brain capillaries of
patients undergoing hypoxic and/or inflammatory conditions.
de
dc.description.abstract
Die Blut-Hirn-Schranke ist die Schnittstelle zwischen dem Blut und dem
Zentralnervensystem. Die Funktion baut hierbei auf kapilläre Endothelzellen im
Gehirn auf. Der parazelluläre Spalt zwischen den Endothelzellen im Gehirn ist
durch Tight Junctions (TJ) verschlossen, einen Membranproteinkomplex, der die
freie Diffusion von Wasser- oder wasserlöslichen Molekülen verhindert. Das
intrazelluläre Zonula occludens Protein 1 (ZO-1) und das transmembrane, TJ-
spezifische Protein Occludin waren die ersten identifizierten TJ-Moleküle. Die
Struktur und die Physiologie dieser beiden Moleküle sind bisher nicht
eindeutig geklärt. Es wird angenommen, dass ZO-1 das Protein für den Gerüstbau
der TJ ist und Occludin das Regulationsverhalten der TJ bestimmt. Ausgehend
von einer Studie in-vitro mit rekombinierten Occludinfragmenten wird eine
redox-empfindliche Funktion von Occludin vermutet. Hier wird zum ersten Mal
demonstriert, dass eine Dimerisierung von Occludin auf eine redox-sensibel
Weise durch das Ausbilden einer intrazellulären Disulfidbrücke mit Cysteine
409 (am C-terminalen Ende von humanem Occludin) stattfindet. Dieses Dimer wird
für die Anlagerung von ZO-1 an die Plasmamembran benötigt. Wenn Occludin in
einem TJ-freien Zellsystem synthetisiert wird, erreicht es die Zellmembran wo
es in trans, mit sich selbst interagiert. Falls in diesem System aber
ebenfalls ZO-1 synthetisiert wird, formt es mit Occludin membranartige
Stränge. Occludin, als dimer, erleichtert ZO-1 die Plasmamembran zu erreichen.
Durch Sauerstoffmangel oder auch oxidativen Stress, der durch TNF- α
hervorgerufen wurde, kann Occludin das Dimer nicht ausbilden und kann dadurch
nicht mehr mit sich selbst-interagieren, trennt sich von ZO-1, sodass beide
Proteine von der Plasmamembran delokalisiert werden. Wird Cystine 409 durch
Alanine (C409A) ersetzt, wird sowohl die Dimerisierung von Occludin als auch
die Anlagerung von ZO-1 an die Zellmembran verhindert. Obwohl die Occludin
C409A Mutante die Zellmembran erreicht, regiert es nicht mit ZO-1 oder bildet
Stränge aus. Basierend auf diesen Experimentdaten ist ein strukturelles Modell
des redox-sensitiven Dimers von Occludin und der Interaktion von Occludin und
ZO-1 geplant. In dieser Arbeit wird gezeigt, dass die zelluläre Expression und
das Zusammenspiel von Occludin und ZO-1 redox-sensibel sind. Bei beginnender
Hypoxie (Sauerstoffmangel) verändert sich das interzelluläre Redoxpotenzial,
welches das Zusammenspiel von Occludin und ZO-1 verhindern; diesen neuartigen
Mechanismus, der zur Regulation der TJ beiträgt. Dadurch trägt diese Arbeit zu
einem besseren Verständnis der Funktion und Regulation der TJ in den Gehirn-
Kapillaren von Patienten bei, die unter Sauerstoffmangel oder/und Entzündung
leiden.
de
dc.format.extent
XI, 109 S.
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject
Tight Junctions
dc.subject
redox sensitivity
dc.subject
blood-brain barrier
dc.subject
cell-cell contacts
dc.subject.ddc
500 Naturwissenschaften und Mathematik::570 Biowissenschaften; Biologie::571 Physiologie und verwandte Themen
dc.title
The interplay between occludin and ZO-1 is redox sensitive
dc.contributor.contact
victor.castro.villela@gmail.com
dc.contributor.firstReferee
Ingolf E. Blasig
dc.contributor.furtherReferee
Hartmut Oschkinat
dc.date.accepted
2011-12-07
dc.identifier.urn
urn:nbn:de:kobv:188-fudissthesis000000034943-1
dc.title.translated
Das Zusammenspiel zwischen Occludin und ZO-1 ist redox-empfindlich
de
refubium.affiliation
Biologie, Chemie, Pharmazie
de
refubium.mycore.fudocsId
FUDISS_thesis_000000034943
refubium.mycore.derivateId
FUDISS_derivate_000000010434
dcterms.accessRights.dnb
free
dcterms.accessRights.openaire
open access