dc.contributor.author
Banthiya, Swathi
dc.date.accessioned
2018-06-07T15:09:46Z
dc.date.available
2017-08-02T13:28:55.124Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/667
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-4869
dc.description
ACKNOWLEDGEMENT
.....................................................................................
I LIST OF
ABBREVIATIONS.............................................................................VII
1\.
INTRODUCTION............................................................................................
1 1.1. Lipoxygenases
............................................................................................
1 1.1.1. History of
lipoxygenases...........................................................................
1 1.1.2. Distribution of lipoxygenases in terrestrial
life........................................... 3 1.1.3. Lipoxygenase
reaction..............................................................................
6 1.1.4. Nomenclature of lipoxygenases
............................................................... 7 1.2.
Biological role of LOX-isoforms
................................................................... 8 1.2.1.
In
mammals..............................................................................................
8 1.2.2. In
plants..................................................................................................
11 1.2.3. In
prokaryotes.........................................................................................
12 1.3. Properties of lipoxygenases
...................................................................... 14
1.3.1. Protein-chemical properties of lipoxygenases
........................................ 14 1.3.1.1. Structural properties of
lipoxygenases................................................. 14 1.3.1.2.
Mutant variants of lipoxygenases
........................................................ 16 1.3.2. Enzymatic
properties of lipoxygenases ..................................................
20 1.3.2.1. Reaction conditions favored by different LOX-
isoforms....................... 20 1.3.2.2. Substrate specificity of
lipoxygenases ................................................. 22 1.3.2.3.
Reaction stereochemistry of lipoxygenases
........................................ 25 1.4. Aims of this project
....................................................................................
27 2\. MATERIALS AND
METHODS.....................................................................
28 2.1.
Materials....................................................................................................
28 2.1.1.
Chemicals...............................................................................................
28 2.1.2. Fatty acid substrates
..............................................................................
29 2.1.3. Phospholipid substrates
......................................................................... 29
2.1.4. HPLC-
standards.....................................................................................
30 2.1.5. Lipoxin and Leukotriene synthesis
......................................................... 30 2.1.6. Cells and
media......................................................................................
30 2.1.7. Rabbit ALOX15
......................................................................................
31 2.1.8. Buffers
....................................................................................................
32 2.1.9. Kits
.........................................................................................................
32 2.2.
Methods.....................................................................................................
32 2.2.1. Site directed mutagenesis
...................................................................... 32
2.2.2. Protein
expression..................................................................................
34 2.2.3. Quantification of protein concentration and of the degree of purity
........ 36 2.2.4. Interaction of PA-LOX with different classes of substrates
..................... 37 2.2.4.1. Fatty acid oxygenase
activity............................................................... 37
2.2.4.2. Phospholipid oxygenase
activity.......................................................... 38 2.2.4.3.
Oxygenation of membrane bound phospholipids ................................
39 2.2.4.4. Oxygenation of intact erythrocyte membranes
.................................... 39 2.2.4.5. Leukotriene and lipoxin
synthesis........................................................ 40 2.2.5.
Activity
assay..........................................................................................
41 2.2.5.1. Spectrophotometric analysis
............................................................... 41 2.2.5.1.1.
PA-LOX with different
PUFAs........................................................... 41 2.2.5.1.2.
Temperature profile
.......................................................................... 41
2.2.5.1.3. Variable oxygen concentrations
....................................................... 41 2.2.5.1.4.
Experiments with stereospecifically labeled substrates .................... 43
2.2.5.2. Oxygraphic activity assay
.................................................................... 43
2.2.5.3. HPLC quantification of reaction products
............................................ 44 2.2.5.3.1. Reversed phase -
HPLC (RP-HPLC)................................................ 44 2.2.5.3.2.
Straight phase - HPLC (SP-
HPLC)................................................... 45 2.2.5.3.3. Chiral
phase - HPLC (CP-HPLC)......................................................
46 2.2.6. Storage stability of purified
enzyme........................................................ 46 2.2.7.
Determination of iron content
................................................................. 47 2.2.8.
GC/MS and LC/MS/MS analysis
............................................................ 47 2.2.8.1.
Analysis of fatty acid oxygenation products of PA-LOX.......................
47 2.2.8.2. Analysis of products with stereospecifically labeled substrates
........... 47 2.2.8.3. Oxidized lipids of PA-LOX treated
RBCs............................................. 48 2.2.9. Protein
crystallization..............................................................................
49 2.2.9.1. Wildtype- PA-LOX
...............................................................................
49 2.2.9.2. Ala420Gly-PA-
LOX..............................................................................
51 3\.
RESULTS.....................................................................................................
54 3.1. Expression and characterization of PA-LOX
............................................. 54 3.1.1. Sequence
alignment...............................................................................
54 3.1.2. Expression of PA-LOX as a recombinant protein
................................... 54 3.1.2.1. Purification of PA-LOX using
gel filtration............................................ 56 3.1.3. Chemical
properties of enzyme preparation ...........................................
57 3.1.3.1. Iron content of PA-LOX
....................................................................... 57
3.1.3.2. Crystal structure of wildtype-PA-LOX
.................................................. 58 3.1.4. Enzymatic
properties of wildtype-PA-LOX.............................................. 61
3.1.4.1. Oxidation of arachidonic and linoleic acid by PA-
LOX......................... 61 3.1.4.1.1. Product analysis
...............................................................................
61 3.1.4.1.2. Quantification of kinetic parameters
................................................. 63 3.1.4.2. Substrate
specificity of PA-LOX
.......................................................... 64 3.1.4.2.1. Poor
substrate behavior of C20:Δ5,8,11...........................................
68 3.1.4.3. Activation energy and thermal stability of PA-LOX
.............................. 69 3.1.4.3.1. Temperature profile of PA-LOX
........................................................ 69 3.1.4.3.2. Thermo
stability of PA-LOX
.............................................................. 70 3.2.
Concepts for the reaction specificity of LOXs
............................................ 71 3.2.1. Triad
concept..........................................................................................
72 3.2.2. Jisaka
determinants................................................................................
73 3.2.3. Ala vs. Gly
concept.................................................................................
74 3.2.3.1. Product profile after Ala to Gly exchange
............................................ 74 3.2.3.2. Ala420Gly lowers the
catalytic efficiency of PA-LOX........................... 76 3.2.3.3. The
antarafacial relationship
............................................................... 76 3.2.3.4.
Crystal structure of Ala420Gly mutant of PA-LOX...............................
78 3.2.3.5. The putative oxygen
channels............................................................. 81
3.2.3.6. Ala420Gly improves the oxygen affinity of PA-LOX
............................ 83 3.3. Biological relevance of PA-LOX
................................................................ 85 3.3.1.
Synthetic capacity for pro- and/or anti-inflammatory mediators..............
85 3.3.1.1. Leukotriene synthase activity
.............................................................. 85 3.3.1.2.
Lipoxin synthase activity
...................................................................... 85
3.3.2. Phospholipids as PA-LOX
substrates..................................................... 87 3.3.2.1.
PA-LOX oxygenates all the four classes of phospholipids................... 87
3.3.2.2. Fatty acid selectivity during phospholipid oxygenation
........................ 89 3.3.3. Biomembranes as PA-LOX substrates
................................................... 91 3.3.3.1. Oxygraphic
measurements..................................................................
92 3.3.3.2. Product structure
.................................................................................
93 3.3.3.3. Time course of membrane oxygenation by PA-LOX
........................... 96 3.3.3.4. Phospholipid specificity during
membrane oxygenation ...................... 97 3.3.4. Intact erythrocytes as
substrates for PA-LOX......................................... 98 3.3.4.1.
Induction of hemolysis
......................................................................... 98
3.3.4.2. Lipidome analysis of erythrocyte lipids
.............................................. 100 4\. DISCUSSION
.............................................................................................
104 4.1. Recombinant expression and purification of PA-
LOX.............................. 104 4.1.1. PA-LOX
sequence................................................................................
104 4.1.2. Expression level
...................................................................................
105 4.1.3. Purity of PA-LOX
..................................................................................
106 4.2. Chemical properties of enzyme preparation
............................................ 106 4.2.1. Molecular weight of
PA-LOX ................................................................ 106
4.2.2. The iron content of PA-LOX
................................................................. 109 4.2.3.
Crystal structure of wildtype-PA-LOX
................................................... 110 4.3. Enzymatic
properties of wildtype-PA-LOX...............................................
112 4.3.1. Free fatty acids as substrates for PA-LOX
........................................... 112 4.3.1.1. Kinetic parameters
with arachidonic acid and linoleic acid ................ 112 4.3.1.2. Kinetic
parameters with other free fatty acid substrates .................... 115
4.3.1.3. Oxygen affinity of PA-
LOX................................................................. 118
4.3.2. Thermal stability and activation energy of PA-LOX
.............................. 119 4.4. Concepts for the reaction specificity
of LOXs .......................................... 120 4.4.1. Triad and Jisaka
determinants ............................................................. 120
4.4.2. Ala vs. Gly
concept...............................................................................
122 4.4.2.1. Product profile after Ala to Gly exchange
.......................................... 122 4.4.2.2. Ala420Gly and wildtype
follow the antarafacial relationship .............. 124 4.4.2.3. Ala420Gly
exchange lowers the catalytic efficiency of PA-LOX ........ 125 4.4.2.4.
Ala420Gly improves the oxygen affinity of PA-LOX ..........................
126 4.5. Biological relevance of PA-LOX
.............................................................. 127 4.5.1.
Lipoxin and leukotriene synthase activity of PA-LOX
........................... 127 4.5.2. PA-LOX oxygenates complex lipid
assemblies .................................... 128 4.5.2.1. Phospholipid and
biomembrane oxygenase activity of PA-LOX........ 128 4.5.2.2. PA-LOX
oxygenates intact cells
........................................................ 130 5\. SUMMARY
.................................................................................................
134 6\. ZUSAMMENFASSUNG
.............................................................................
136 7\. BIBLIOGRAPHY
........................................................................................
138 8\. LIST OF
PUBLICATIONS..........................................................................
156 9\. CURRICULUM
VITAE................................................................................
158 10\. APPENDIX
...............................................................................................
160
dc.description.abstract
SUMMARY LOXs are lipid-peroxidizing enzymes, the biological functions of which
have extensively been studied in mammals, plants and lower eukaryotic
organisms. The opportunistic pathogen Pseudomonas aeruginosa (PA), which
causes life-threatening infections in immunocompromised individuals, is among
the rare bacterial species, which expresses a secretory lipoxygenase (PA-LOX).
Although the enzyme was already discovered in the mid-1960s, its biological
relevance has not been explored. The aim of this dissertation was to
characterize PA-LOX with respect to its structural and functional properties
and to obtain experimental evidence for its biological role. To reach these
goals PA-LOX was overexpressed as recombinant His6-tag fusion protein in E.
coli and purified to electrophoretic homogeneity by a combination of different
chromatographic techniques. A molecular weight of 70 kDA was determined and
each enzyme molecule contained 1 iron ion. PA-LOX functions as n-6 fatty acid
dioxygenase and exhibits a similar catalytic efficiency with both, arachidonic
acid and linoleic acid. The enzyme was crystallized and its 3D-structure (1.48
Å) indicated that the polypeptide chain folds into a single domain. The
active site, which contains the non- heme iron, constitutes a bifurcated
hydrophobic cavity, which involves a phospholipid molecule as endogenous lipid
ligand. Multiple mutagenesis studies indicated that the reaction specificity
of PA-LOX does not follow some classical concepts worked out for mammalian
LOXs. However, Ala420Gly exchange altered the reaction specificity of the
enzyme and the crystal structure of the mutant enzyme (1.8 Å) suggested an
altered path of intra-enzyme oxygen diffusion as mechanistic basis for the
observed functional changes. In contrast to most mammalian LOX-isoforms, PA-
LOX was capable of oxidizing phospholipids to specific oxygenation products
even if they were incorporated in biomembranes. Long term (24 h) in vitro
incubations of PA-LOX with intact erythrocytes caused hemolysis and lipidomic
analysis indicated that more than 50 % of the polyenoic fatty acids present in
the membrane lipids were oxygenated. It might be speculated that the catalytic
activity of the secreted enzyme on the membrane phospholipids of host cells
may destabilize the membrane structure allowing the pathogen to enter the cell
more easily. In this case the development of PA-LOX specific inhibitors might
constitute a novel concept for anti-PA therapy. Moreover, PA-LOX is capable of
converting polyenoic fatty acids to anti-inflammatory and pro-resolving
lipoxins. If this catalytic activity is of in vivo relevance, the pathogen can
down-regulate the immune system of the host, which might be considered as part
of an evasion strategy of this particular pathogen.
de
dc.description.abstract
ZUSAMMENFASSUNG Lipoxygenasen (LOX) sind lipidperoxidierende Enzyme, deren
biologische Funktionen in Säugetieren, Pflanzen und niederen Eukaryoten
umfassend untersucht wurden. Das Bakterium Pseudomonas aeruginosa (PA),
welches lebensbedrohliche Infektionen bei Patienten mit geschwächtem
Immunsystem hervorruft, gehört zu den seltenen Bakterienspezies, die eine
sekretorische LOX (PA-LOX) exprimieren. Obwohl das Enzym bereits in den 1960er
Jahren erstmals beschrieben wurde, konnte seine biologische Bedeutung bis
heute nicht aufgeklärt werden. Die Ziele der vorliegenden Dissertation
bestanden darin, die PA-LOX als rekombinantes Protein zu exprimieren und es
hinsichtlich seiner strukturellen und funktionellen Eigenschaften zu
charakterisieren. Die rekombinante PA-LOX weist ein Molekulargewicht von 70
kDa auf und jedes Enzymmolekül enthält ein Eisenion. Das Protein fungiert
als n-6- Fettsäuredioxygenase und kann Linolsäure, Arachidonsäure und
andere Polyenfettsäuren mit hoher Reaktionsrate oxygenieren. Das rekombinante
Protein wurde kristallisiert und seine 3D-Struktur (1,48Å) aufgeklärt. Die
Polypeptidkette faltet sich zu einer einzigen Domäne, welche das katalytisch
wirksame Nichthämeisen enthält. Das aktive Zentrum der PA-LOX wird von einem
gabelförmigen hydrophoben Hohlraum gebildet, der ein Phospholipidmolekül als
endogenen Lipidliganden enthält. Multiple Mutageneseuntersuchungen zeigten,
dass die Reaktionsspezifität der PA-LOX nicht den klassischen Konzepten
folgt, die für Säugetier-LOX ausgearbeitet wurden. Der Austausch von
Ala420Gly veränderte die Reaktionsspezifität des Enzyms und die
Kristallstruktur der Enzymmutante deutet darauf hin, dass die Diffussion von
Sauerstoff innerhalb des Proteins durch die Mutation verändert wurde. Diese
strukturelle Veränderung erklärt die beobachtete Modifizierung der
Positionsspezifität. Im Gegensatz zu den meisten Säugetierlipoxygenasen ist
die PA-LOX in der Lage, Phospholipide zu spezifischen Oxygenierungsprodukten
umzuwandeln, selbst wenn diese in Biomembranen eingebaut sind.
Langzeitnkubationen (24h) der rekombinanten PA-LOX mit intakten Erythrozyten
führten zur Hämolyse, wobei die Lipidom-Analyse zeigte, dass mehr als 50 %
der in den Membranlipiden vorliegenden Polyenfettsäuren oxygeniert waren. Da
PA in der Lage ist, eukaryotische Zellen zu infizieren, könnte man
spekulieren, dass die katalytische Aktivität des sezernierten Enzyms die
Membranstruktur der Wirtszellen destabilisiert, wodurch das Pathogen leichter
in die Zelle gelangen kann. Sollte dieser Mechansimus zutreffen, könnte die
Entwicklung von PA-LOX-spezifischen Inhibitoren von großem medizinischen
Interesse sein. Darüber hinaus ist PA-LOX in der Lage, Polyenfettsäuren zu
entzündungshemmenden Lipoxinen umzuwandeln. Wenn diese katalytische
Aktivität auch in vivo nachzuweisen wäre, kann das Bakterium das Immunsystem
des Wirts herunterregulieren, was als Teil einer Evationsstrategie dieses
Erregers angesehen werden kann.
de
dc.format.extent
IX, 162 Seiten
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject
Bacterial infections
dc.subject
Protein X-ray crystallography
dc.subject
Protein structure
dc.subject
Oxidative stress
dc.subject.ddc
500 Naturwissenschaften und Mathematik::570 Biowissenschaften; Biologie::572 Biochemie
dc.title
Recombinant expression and characterization of a prokaryotic lipoxygenase from
Pseudomonas aeruginosa. Investigations into the biological role of this enzyme
dc.contributor.contact
swathi.banthiya@gmail.com
dc.contributor.firstReferee
Prof. Dr. med. Rudolf Tauber
dc.contributor.furtherReferee
Prof. Dr. med. Hartmut Kühn
dc.date.accepted
2017-06-22
dc.identifier.urn
urn:nbn:de:kobv:188-fudissthesis000000104996-3
dc.title.translated
Rekombinante Expression und Charakterisierung einer prokaryotischen
Lipoxygenase aus Pseudomonas aeruginosa. Untersuchungen zur biologischen Rolle
dieses Enzyms
de
refubium.affiliation
Biologie, Chemie, Pharmazie
de
refubium.mycore.fudocsId
FUDISS_thesis_000000104996
refubium.mycore.derivateId
FUDISS_derivate_000000021749
dcterms.accessRights.dnb
free
dcterms.accessRights.openaire
open access