dc.contributor.author
Rakers, Christin
dc.date.accessioned
2018-06-07T19:06:08Z
dc.date.available
2016-05-04T14:18:41.241Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/5730
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-9929
dc.description.abstract
Sulfotransferases (SULTs) are among the predominant enzyme families of phase
II metabolism. They transform endogenous molecules and environmental
substances, such as drugs, into more hydrophilic entities serving
detoxification. This transformation has also been associated with the
formation of chemically reactive metabolites interacting with DNA. SULT
subtype 1E1 (SULT1E1) shows high affinity towards estrogenic compounds and is
involved in the regulation of endogenous estrogens such as estradiol. On the
other hand, this enzyme can be strongly inhibited by environmental estrogens
and endocrine disrupting compounds which deregulates metabolism reactions in
the human body. The aim of the present study was to develop an in silico model
for the prediction of SULT1E1 ligands, which allows identification of
substrates and inhibitors to facilitate drug design and support risk
assessment. All available crystal structures of SULT1E1 were analysed and
compared to other major SULT subtypes to elucidate structural descriptors that
influence ligand binding and substrate specificity. Findings from this
structural investigation provided essential clues for subsequent prediction
model development. In order to create a computer-based model for SULT1E1
ligand prediction, a specific workflow was designed using a combination of
different in silico techniques. MD simulations were performed to investigate
enzyme flexibility contributing to the broad substrate spectra of metabolic
enzymes and to sample the conformational space. Diversity clustering of the
trajectories produced an ensemble of protein conformations whose ligand
binding sites differed from the original SULT1E1 crystal structure. In an
ensemble docking approach, these protein conformations were combined with a
ligand database of active SULT1E1 ligands, consisting of substrates,
inhibitors, and concentration-dependent ligands (CDLs), to generate ligand-
target complexes and to investigate their interaction patterns. The ensemble
docking results were statistically and visually analysed based on 3D
pharmacophore feature formation. Guided by statistical analysis of docking
experiments, a selection of ligand-target complexes was chosen as a basis for
3D pharmacophore development. Eight specific 3D pharmacophores were developed
that allow identification of diverse ligand classes (different activities and
scaffolds) and types (substrates, inhibitors) of SULT1E1. The validated 3D
pharmacophore ensemble showed a sensitivity of 60 % and a specificity of 98 %.
For further refinement of the pharmacophore-based prediction of hit molecules,
a substrate-filter and two classification models based on support vector
machines (SVM) were created. The validated SVM models for inhibitor and
substrate classification showed accuracies of 85 % and 91 %, respectively. In
order to estimate the impact of SULT1E1 metabolism on current drugs, the final
prediction model was applied to the DrugBank (a database comprising about
6,500 experimental and approved drugs) for virtual screening. From the 68 hit
molecules, 28 % were identified as active SULT1E1 ligands through literature
search. A selection of nine compounds was chosen for experimental validation
including enzyme assays for inhibition and sulfonation. The experimental
results confirmed the computer-based hypotheses and revealed previously
unknown involvement of compounds listed in the DrugBank in biotransformation
or inhibition of SULT1E1. The resulting prediction model of SULT1E1 could
serve as an efficient in silico tool in early drug development for improved
virtual screening of large databases and to provide structural alerts
correlated with phase II metabolism during lead optimization. Furthermore, it
potentially supports risk assessment of developed compounds in the
pharmaceutical, nutritional, and cosmetic industry that bear the risk of being
transformed into chemically reactive compounds damaging cellular DNA.
de
dc.description.abstract
Sulfotransferasen (SULTs) gehören zu den wichtigsten Enzymfamilien des Phase
II Metabolismus. Mit ihrer Hilfe werden Xenobiotika in wasserlöslichere
Zwischenprodukte umgewandelt, um schneller ausgeschieden werden zu können.
SULT-katalysierte Reaktionen können jedoch auch zur Entstehung cancerogener
Metaboliten führen. SULT Subtyp 1E1 (SULT1E1) weist Substratspezifität
gegenüber Estrogenen auf und spielt daher eine wichtige Rolle in der
Hormonregulation. Zudem kann das Enzym durch Estrogene und Endokrine
Disruptoren stark inhibiert werden. Das Ziel dieser Studie war daher die
Entwicklung eines computergestützten Modells zur Vorhersage von
SULT1E1-Liganden welches die Identifizierung von Substraten und Inhibitoren
erlaubt. Verfügbare Kristallstrukturen der SULT1E1 wurden analysiert und mit
anderen SULT-Subtypen verglichen. Dies diente der Identifizierung von
Merkmalen, welche die Substratspezifität beeinflussen und welche zur
Entwicklung eines Vorhersagemodells eingesetzt werden können. Zur Erstellung
des Modells wurde eine Sequenz von Methoden entwickelt und implementiert, die
das breite Substratspektrum metabolischer Enzyme berücksichtigt. Im ersten
Schritt wurden Moleküldynamiken des Enzyms in An- und Abwesenheit des
Kofaktors simuliert. Auf Basis der Molekültrajektorien wurden
Proteinkonformationen extrahiert, welche eine besonders diverse
Ligandenbindestelle aufwiesen. Im nächsten Schritt wurden aktive Liganden der
SULT1E1 (Inhibitoren, Substrate und Konzentrations-abhängige Liganden (CDLs))
in das Ensemble von Proteinen gedockt. Die daraus resultierenden Protein-
Ligand Komplexe wurde statistisch und visuell unter Berücksichtigung von 3D
Pharmakophordeskriptoren ausgewertet. Auf Grundlage dieser Analyse wurden acht
spezifische 3D Pharmakophore erstellt, welche in der Lage sind
SULT1E1-Liganden zu identifizieren. Die validierten 3D Pharmakophore weisen
eine Sensitivität von 60 % und eine Spezifität von 98 % auf. Zur Optimierung
der Pharmakophor-basierten Vorhersage wurden ein Substratfilter und zwei
Klassifizierungsmodelle basierend auf Support Vector Machines (SVM)
entwickelt. Die validierten SVM Modelle zur Inhibitor- und Substrat-
Identifizierung weisen eine Genauigkeit von 85 % und 91 % auf. Das finale
Vorhersagemodell für SULT1E1-Liganden wurde durch virtuelles Screening der
DrugBank-Datenbank getestet, um das Ausmaß an SULT-Metabolismus an derzeitig
erhältlichen oder in der Entwicklung stehenden Medikamenten zu untersuchen.
Von etwa 6.500 gelisteten Molekülen in der Datenbank wurde 68 als aktive
SULT1E1-Liganden identifiziert. Davon waren 28 % bereits in der Literatur
bekannt. Neun der restlichen Substanzen wurden zur experimentellen Testung
ausgewählt in der sowohl die Bestimmung von Inhibitoren als auch Substraten
berücksichtigt wurde. Die experimentellen Ergebnisse standen im Einklang mit
der computer-basierten Vorhersage und führten zur Identifizierung von
Substanzen welche zuvor nicht mit SULT1E1-Aktivität in Verbindung gebracht
wurden. Das hier entwickelte computerbasierte Vorhersagemodell des Enzyms
SULT1E1 kann in frühen Phasen der Arzneistoffentwicklung eingesetzt werden, um
potenziell metabolisch toxische Substanzen zu identifizieren. Desweiteren
unterstützt das Modell die Risikobewertung bereits vermarkteter Substanzen der
Pharma-, Ernährungs- und Kosmetikindustrie.
de
dc.format.extent
VI, 150 Seiten
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject
sulfotransferase
dc.subject.ddc
500 Naturwissenschaften und Mathematik::570 Biowissenschaften; Biologie::572 Biochemie
dc.subject.ddc
600 Technik, Medizin, angewandte Wissenschaften::610 Medizin und Gesundheit::615 Pharmakologie, Therapeutik
dc.title
Prediction of sulfotransferase specificity for risk assessment in drug design
dc.contributor.firstReferee
Prof. Dr. Gerhard Wolber
dc.contributor.furtherReferee
Prof. Dr. Dr. Klaus Liedl
dc.date.accepted
2016-04-28
dc.identifier.urn
urn:nbn:de:kobv:188-fudissthesis000000101980-0
dc.title.translated
Computergestützte Vorhersage von Sulfotransferase-Liganden zur
Risikoabschätzung im Wirkstoffdesign
en
refubium.affiliation
Biologie, Chemie, Pharmazie
de
refubium.mycore.fudocsId
FUDISS_thesis_000000101980
refubium.mycore.derivateId
FUDISS_derivate_000000019159
dcterms.accessRights.dnb
free
dcterms.accessRights.openaire
open access