dc.contributor.author
Shams, Boshra
dc.contributor.author
Reisch, Klara
dc.contributor.author
Vajkoczy, Peter
dc.contributor.author
Lippert, Christoph
dc.contributor.author
Picht, Thomas
dc.contributor.author
Fekonja, Lucius S.
dc.date.accessioned
2025-11-28T15:52:22Z
dc.date.available
2025-11-28T15:52:22Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/50494
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-50221
dc.description.abstract
White matter impairments caused by gliomas can lead to functional disorders. In this study, we predicted aphasia in patients with gliomas infiltrating the language network using machine learning methods. We included 78 patients with left-hemispheric perisylvian gliomas. Aphasia was graded preoperatively using the Aachen aphasia test (AAT). Subsequently, we created bundle segmentations based on automatically generated tract orientation mappings using TractSeg. To prepare the input for the support vector machine (SVM), we first preselected aphasia-related fiber bundles based on the associations between relative tract volumes and AAT subtests. In addition, diffusion magnetic resonance imaging (dMRI)-based metrics [axial diffusivity (AD), apparent diffusion coefficient (ADC), fractional anisotropy (FA), and radial diffusivity (RD)] were extracted within the fiber bundles' masks with their mean, standard deviation, kurtosis, and skewness values. Our model consisted of random forest-based feature selection followed by an SVM. The best model performance achieved 81% accuracy (specificity = 85%, sensitivity = 73%, and AUC = 85%) using dMRI-based features, demographics, tumor WHO grade, tumor location, and relative tract volumes. The most effective features resulted from the arcuate fasciculus (AF), middle longitudinal fasciculus (MLF), and inferior fronto-occipital fasciculus (IFOF). The most effective dMRI-based metrics were FA, ADC, and AD. We achieved a prediction of aphasia using dMRI-based features and demonstrated that AF, IFOF, and MLF were the most important fiber bundles for predicting aphasia in this cohort.
en
dc.rights.uri
https://creativecommons.org/licenses/by-nc/4.0/
dc.subject
diffusion MRI
en
dc.subject
machine learning
en
dc.subject
random forest
en
dc.subject
support vector machine
en
dc.subject
tract orientation mapping
en
dc.subject.ddc
600 Technik, Medizin, angewandte Wissenschaften::610 Medizin und Gesundheit::610 Medizin und Gesundheit
dc.title
Improved prediction of glioma‐related aphasia by diffusion <scp>MRI</scp> metrics, machine learning, and automated fiber bundle segmentation
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1002/hbm.26393
dcterms.bibliographicCitation.journaltitle
Human Brain Mapping
dcterms.bibliographicCitation.number
12
dcterms.bibliographicCitation.originalpublishername
Wiley
dcterms.bibliographicCitation.pagestart
4480
dcterms.bibliographicCitation.pageend
4497
dcterms.bibliographicCitation.volume
44
refubium.affiliation
Charité - Universitätsmedizin Berlin
refubium.funding
DEAL Wiley
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.bibliographicCitation.pmid
37318944
dcterms.isPartOf.issn
1065-9471
dcterms.isPartOf.eissn
1097-0193