dc.contributor.author
Olaniyan, Ibukun
dc.contributor.author
Blázquez Martínez, Alfredo
dc.contributor.author
Hevelke, Valentin Väinö
dc.contributor.author
Wiesner, Sven
dc.contributor.author
Wu, Rong
dc.contributor.author
Phan, Thanh Luan
dc.contributor.author
Cours, Robin
dc.contributor.author
Cherkashin, Nikolay
dc.contributor.author
Schamm-Chardon, Sylvie
dc.contributor.author
Kim, Dong-Jik
dc.contributor.author
Dubourdieu, Catherine
dc.date.accessioned
2025-11-06T06:40:19Z
dc.date.available
2025-11-06T06:40:19Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/50165
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-49891
dc.description.abstract
Optical manipulation of ferroelectric polarization is a promising method for potentially ultrafast and remote polarization switching without electrodes. Here, we report optical ferroelastic and ferroelectric switching by UV irradiation in epitaxial BaTiO3 thin films grown on a SrTiO3-buffered Si substrate. The pristine BaTiO3 film is in the tetragonal ferroelectric phase with both in-plane and out-of-plane ferroelectric polarization. After irradiation by a 325 nm UV laser, the polarization is mainly out-of-plane indicating ferroelastic switching. Moreover, all initial downward polarized domains have switched to upward, thus showing ferroelectric 180°-domain switching. After irradiation the film exhibits mainly a single up-oriented polarization and as a result, the irradiated regions exhibit an enhanced piezoelectric response. We propose that the observed ferroelastic and ferroelectric switching is triggered by additional strain/stress fields generated by internal electric fields arising mainly from the spatial charge carrier separation after photoexcitation. These strain/stress fields add up to the Vegard strain field and to local heating, which induce defect motion and a final state with full strain relaxation. This optical switching enables remote manipulation of ferroelastic and ferroelectric domains in BaTiO3 films on silicon. Moreover, UV illumination appears as a potential postdeposition treatment to heal defects and obtain a strain-free epitaxial layer.
en
dc.format.extent
10 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
barium titanate
en
dc.subject
ferroelasticswitching
en
dc.subject
polarizationswitching
en
dc.subject
photoelectric effect
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::540 Chemie::540 Chemie und zugeordnete Wissenschaften
dc.title
Optically Induced Irreversible Ferroelastic and Ferroelectric Switching in Epitaxial BaTiO3 Films on Silicon
dc.type
Wissenschaftlicher Artikel
dc.date.updated
2025-11-06T01:01:04Z
dcterms.bibliographicCitation.doi
10.1021/acsnano.5c05309
dcterms.bibliographicCitation.journaltitle
ACS Nano
dcterms.bibliographicCitation.number
43
dcterms.bibliographicCitation.pagestart
37534
dcterms.bibliographicCitation.pageend
37543
dcterms.bibliographicCitation.volume
19
dcterms.bibliographicCitation.url
https://doi.org/10.1021/acsnano.5c05309
refubium.affiliation
Biologie, Chemie, Pharmazie
refubium.affiliation.other
Institut für Chemie und Biochemie / Physikalische und Theoretische Chemie

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
1936-0851
dcterms.isPartOf.eissn
1936-086X
refubium.resourceType.provider
DeepGreen