dc.contributor.author
Harris, Ruben
dc.contributor.author
Schillings, Claudia
dc.date.accessioned
2025-11-03T08:38:44Z
dc.date.available
2025-11-03T08:38:44Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/50107
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-49832
dc.description.abstract
The ensemble Kalman inversion (EKI) method is widely used for solving inverse problems, leveraging ensemble-based techniques to iteratively refine parameter estimates. Despite its versatility, the accuracy of EKI is constrained by the subspace spanned by the initial ensemble, which may poorly represent the solution in cases of limited prior knowledge. This work addresses these limitations by optimising the subspace in which EKI operates, improving accuracy and computational efficiency. We derive a theoretical framework for constructing optimal subspaces in linear settings and extend these insights to nonlinear cases. A novel greedy strategy for selecting initial ensemble members is proposed, incorporating prior, data, and model information to enhance performance. Numerical experiments on both linear and nonlinear problems demonstrate the effectiveness of the approach, offering a significant advancement in the accuracy and scalability of EKI for high-dimensional and ill-posed problems.
en
dc.format.extent
36 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
ensemble Kalman inversion
en
dc.subject
particle system
en
dc.subject
optimisation
en
dc.subject
Bayesian inverse problems
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
Accuracy improvement in ensemble Kalman inversion through data-informed ensemble selection
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
105010
dcterms.bibliographicCitation.doi
10.1088/1361-6420/ae115f
dcterms.bibliographicCitation.journaltitle
Inverse Problems
dcterms.bibliographicCitation.number
10
dcterms.bibliographicCitation.volume
41
dcterms.bibliographicCitation.url
https://doi.org/10.1088/1361-6420/ae115f
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1361-6420
refubium.resourceType.provider
WoS-Alert