dc.contributor.author
Li, Ruidan
dc.contributor.author
Wang, Ting
dc.contributor.author
Mu, Shengdong
dc.contributor.author
Xing, Zhenyu
dc.contributor.author
Ding, Zhiying
dc.contributor.author
Wen, Qinlong
dc.contributor.author
Wei, Zhigong
dc.contributor.author
Wang, Xiaolin
dc.contributor.author
Adeli, Mohsen
dc.contributor.author
Li, Shuang
dc.contributor.author
Cheng, Chong
dc.contributor.author
Peng, Xingchen
dc.date.accessioned
2025-10-28T06:20:14Z
dc.date.available
2025-10-28T06:20:14Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/50035
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-49760
dc.description.abstract
Designing efficient, biocompatible radiation-sensitive materials to activate systemic immune responses can maximize tumoricidal effects against malignant tumors. Here, inspired by natural Mn-peroxidase, we propose the de novo design of the RuMn-oxygen complex (MnBTC-Ru) for biocatalytic and radiosensitization therapies to eradicate primary and metastatic tumors. Our results reveal that Mn-organic ligands can enhance the electron density of Ru clusters, thereby optimizing their binding to oxygen species and resulting in high reactive oxygen species and oxygen generation. Accordingly, MnBTC-Ru with radiation can enhance cell membrane and DNA damage, triggering apoptosis though oxidative damage, heightening radiosensitization, and activating CD8 + T cells. When combined with anti-PD-1 therapy, this synergistic approach generates robust systemic antitumor responses in female mice, promoting the abscopal effect and establishing enduring immune memory against tumors, thereby reducing recurrence and metastasis. This design presents superior biocatalytic and radiosensitizing properties, which may provide promising and practical bio-nanotechnology for future treatments on eradicating primary and metastatic tumors.
en
dc.format.extent
18 Seiten
dc.rights
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Nanocomposites
en
dc.subject
Nanoparticles
en
dc.subject
Nanostructures
en
dc.subject
Nanotechnology in cancer
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::540 Chemie::540 Chemie und zugeordnete Wissenschaften
dc.title
Bioinspired ruthenium-manganese-oxygen complex for biocatalytic and radiosensitization therapies to eradicate primary and metastatic tumors
dc.type
Wissenschaftlicher Artikel
dc.date.updated
2025-10-27T18:18:15Z
dcterms.bibliographicCitation.articlenumber
7640
dcterms.bibliographicCitation.doi
10.1038/s41467-025-62999-x
dcterms.bibliographicCitation.journaltitle
Nature Communications
dcterms.bibliographicCitation.number
1
dcterms.bibliographicCitation.volume
16
dcterms.bibliographicCitation.url
https://doi.org/10.1038/s41467-025-62999-x
refubium.affiliation
Biologie, Chemie, Pharmazie
refubium.affiliation.other
Institut für Chemie und Biochemie

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2041-1723
refubium.resourceType.provider
DeepGreen