dc.contributor.author
Meyer, Johannes Jakob
dc.contributor.author
Khatri, Sumeet
dc.contributor.author
Stilck França, Daniel
dc.contributor.author
Eisert, Jens
dc.contributor.author
Faist, Philippe
dc.date.accessioned
2025-10-24T11:37:53Z
dc.date.available
2025-10-24T11:37:53Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/49992
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-49717
dc.description.abstract
In quantum metrology, a major application of quantum technologies, the ultimate precision of estimating an unknown parameter is often stated in terms of the Cramér-Rao bound. Yet, the latter fails to completely characterize the distribution of estimates in the nonasymptotic regime. Optimizing metrology protocols with respect to the Cramér-Rao bound can therefore lead to surprisingly poor finite-sample performance. This can be avoided by quantifying the quality of a metrology protocol by the probability of obtaining an estimate with a given accuracy. Using this intrinsically single-shot quantity naturally accommodates the finite-sample regime. We show that the fundamental limits of this figure of merit can be quantified through a multihypothesis testing problem between quantum states. Building on this connection, we derive an analogue of the Cramér-Rao bound that contains explicit corrections relevant to the finite-sample regime. We apply the finite-sample metrology framework to the example task of phase estimation with an ensemble of spin-1/2 particles, giving unambiguous evidence that large quantum Fisher information does not guarantee that a metrology protocol has a good finite-sample performance. Overall, analyzing the probability of success allows the reliable study of quantum metrology in the finite-sample regime and opens up a plethora of new avenues for research at the interface of quantum information theory and quantum metrology.
en
dc.format.extent
29 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Quantum information theory
en
dc.subject
Quantum metrology
en
dc.subject
Quantum parameter estimation
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
Quantum Metrology in the Finite-Sample Regime
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
030336
dcterms.bibliographicCitation.doi
10.1103/qbn1-p6bq
dcterms.bibliographicCitation.journaltitle
PRX Quantum
dcterms.bibliographicCitation.number
3
dcterms.bibliographicCitation.volume
6
dcterms.bibliographicCitation.url
https://doi.org/10.1103/qbn1-p6bq
refubium.affiliation
Physik
refubium.affiliation.other
Dahlem Center für komplexe Quantensysteme

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2691-3399
refubium.resourceType.provider
WoS-Alert