dc.contributor.author
Mezera, Matěj
dc.contributor.author
Erdman, Paolo A.
dc.contributor.author
Schätzle, Zeno
dc.contributor.author
Szabó, P. Bernát
dc.contributor.author
Noé, Frank
dc.date.accessioned
2025-10-17T10:50:51Z
dc.date.available
2025-10-17T10:50:51Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/49862
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-49587
dc.description.abstract
We propose a novel wave function partitioning method that integrates deep-learning variational Monte Carlo with ansätze based on generalized product functions. This approach effectively separates electronic wave functions (WFs) into multiple partial WFs representing, for example, the core and valence domains or different electronic shells. Although our ansätze do not explicitly include correlations between individual electron groups, we show that they accurately reproduce the underlying physics and chemical properties, such as dissociation curve, dipole moment, reaction energy, ionization energy, or atomic sizes. We identify the optimal number of core electrons and define physical core sizes for Li to Mg atoms. Our results demonstrate that core electrons can be effectively decoupled from valence electrons. We show that the core part of the WF remains nearly constant across different molecules and their geometries, enabling the transfer and reuse of the core part in WFs of more complex systems. This work provides a general framework for WF decomposition, offering potential advantages in computing and studying larger systems, and possibly paving the way for ab initio development of effective core potentials. Although currently limited to small molecules due to scaling, we highlight several directions for extending our method it to larger systems.
en
dc.format.extent
14 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Slater determinant
en
dc.subject
Electronic structure
en
dc.subject
Monte Carlo methods
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
Partitioning the electronic wave function using deep variational Monte Carlo
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
084117
dcterms.bibliographicCitation.doi
10.1063/5.0286721
dcterms.bibliographicCitation.journaltitle
Journal of Chemical Physics
dcterms.bibliographicCitation.number
8
dcterms.bibliographicCitation.volume
163
dcterms.bibliographicCitation.url
https://doi.org/10.1063/5.0286721
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1089-7690
refubium.resourceType.provider
WoS-Alert