dc.contributor.author
Karafiludis, Stephanos
dc.contributor.author
Standl, Jacob
dc.contributor.author
Ryll, Tom W.
dc.contributor.author
Schwab, Alexander
dc.contributor.author
Prinz, Carsten
dc.contributor.author
Wolf, Jakob B.
dc.contributor.author
Kruschwitz, Sabine
dc.contributor.author
Emmerling, Franziska
dc.contributor.author
Völker, Christoph
dc.contributor.author
Stawski, Tomasz M.
dc.date.accessioned
2025-10-06T11:33:38Z
dc.date.available
2025-10-06T11:33:38Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/49671
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-49394
dc.description.abstract
Transition metal phosphates (TMPs) are extensively explored for electrochemical and catalytical applications due to their structural versatility and chemical stability. Within this material class, novel high-entropy metal phosphates (HEMPs)─containing multiple transition metals combined into a single-phase structure─are particularly promising, as their compositional complexity can significantly enhance functional properties. However, the discovery of suitable HEMP compositions is hindered by the vast compositional design space and complex or very specific synthesis conditions. Here, we present a data-driven strategy combining automated wet-chemical synthesis with a Sequential Learning App for Materials Discovery (SLAMD) framework (Random Forest regression model) to efficiently explore and optimize HEMP compositions. Using a limited set of initial experiments, we identified multimetal compositions in a single-phase crystalline solid. The model successfully predicted a novel Co0.3Ni0.3Fe0.2Cd0.1Mn0.1 phosphate octahydrate phase, validated experimentally, demonstrating the effectiveness of the machine learning approach. This work highlights the potential of integrating automated synthesis platforms with data-driven algorithms to accelerate the discovery of high-entropy materials, offering an efficient design pathway to advanced functional materials.
en
dc.format.extent
13 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject.ddc
500 Naturwissenschaften und Mathematik::540 Chemie::540 Chemie und zugeordnete Wissenschaften
dc.title
High-Entropy Phosphate Synthesis: Advancements through Automation and Sequential Learning Optimization
dc.type
Wissenschaftlicher Artikel
dc.date.updated
2025-10-02T23:48:10Z
dcterms.bibliographicCitation.doi
10.1021/acs.cgd.5c00549
dcterms.bibliographicCitation.journaltitle
Crystal Growth & Design
dcterms.bibliographicCitation.number
19
dcterms.bibliographicCitation.pagestart
7989
dcterms.bibliographicCitation.pageend
8001
dcterms.bibliographicCitation.volume
25
dcterms.bibliographicCitation.url
https://doi.org/10.1021/acs.cgd.5c00549
refubium.affiliation
Biologie, Chemie, Pharmazie
refubium.affiliation.other
Institut für Chemie und Biochemie

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
1528-7483
dcterms.isPartOf.eissn
1528-7505
refubium.resourceType.provider
DeepGreen