dc.contributor.author
Olaniyan, Ibukun
dc.contributor.author
Albert, Jürgen
dc.contributor.author
Canabarro, Beatriz
dc.contributor.author
Lu, Haidong
dc.contributor.author
Wiesner, Sven
dc.contributor.author
Cherkashin, Nikolay
dc.contributor.author
Gruverman, Alexei
dc.contributor.author
Schamm-Chardon, Sylvie
dc.contributor.author
Kim, Dong-Jik
dc.contributor.author
Dubourdieu, Catherine
dc.date.accessioned
2025-10-31T08:05:32Z
dc.date.available
2025-10-31T08:05:32Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/49557
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-49279
dc.description.abstract
The miniaturization of ferroelectrics with lateral size reduction is crucial for technological advancement but requires an understanding of the fundamental behavior of ferroelectrics at the nanoscale. While much attention has been focused on vertical scaling of perovskite ferroelectrics with thickness reduction, lateral scaling remains less explored. In this study, ferroelectricity is investigated in 20 nm thick single-crystalline BaTiO3 nanodisks with a diameter ranging from ≈ 400 down to 100 nm. They are fabricated by Ne ion milling of a 20 nm BaTiO3 film epitaxially grown on SrTiO3-buffered silicon. The nanodisks are ferroelectric with a Curie temperature in the range 230–270 °C as determined by temperature-dependent piezoresponse force microscopy. In 100 nm-diameter nanodisks, the vertical polarization component adopts three distinct patterns in the pristine state, aligning with theoretical predictions. The most prevalent pattern features a uniformly up-oriented vertical component. The rotational invariance of these domain patterns in the plane suggests a combination of center-type and flux-closure domains. Additionally, the up polarization can be switched progressively to down polarization upon application of a pulsed bias of increasing time width. The control of the polarization in nanostructures and of their progressive switching is of particular interest for memory applications.
en
dc.format.extent
14 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
ferroelectrics
en
dc.subject
nanostructures
en
dc.subject
polar texture
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::540 Chemie::540 Chemie und zugeordnete Wissenschaften
dc.title
Ferroelectricity in Single-Crystalline BaTiO3 Nanodisks on Silicon
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
e07905
dcterms.bibliographicCitation.doi
10.1002/adfm.202507905
dcterms.bibliographicCitation.journaltitle
Advanced Functional Materials
dcterms.bibliographicCitation.number
43
dcterms.bibliographicCitation.volume
35
dcterms.bibliographicCitation.url
https://doi.org/10.1002/adfm.202507905
refubium.affiliation
Biologie, Chemie, Pharmazie
refubium.affiliation.other
Institut für Chemie und Biochemie

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1616-3028
refubium.resourceType.provider
WoS-Alert