dc.contributor.author
Engeser, Micha
dc.contributor.author
Ajith, Susan
dc.contributor.author
Duymaz, Ilker
dc.contributor.author
Wang, Gongting
dc.contributor.author
Foxwell, Matthew J.
dc.contributor.author
Cichy, Radoslaw M.
dc.contributor.author
Pitcher, David
dc.contributor.author
Kaiser, Daniel
dc.date.accessioned
2025-09-24T12:37:04Z
dc.date.available
2025-09-24T12:37:04Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/49525
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-49247
dc.description.abstract
Despite the complexity of real-world environments, natural vision is seamlessly efficient. To explain this efficiency, researchers often use predictive processing frameworks, in which perceptual efficiency is determined by the match between the visual input and internal models of what the world should look like. In scene vision, predictions derived from our internal models of a scene should play a particularly important role, given the highly reliable statistical structure of our environment. Despite their importance for scene perception, we still do not fully understand what is contained in our internal models of the environment. Here, we highlight that the current literature disproportionately focuses on an experimental approach that tries to infer the contents of internal models from arbitrary, experimenter-driven manipulations in stimulus characteristics. To make progress, additional participant-driven approaches are needed, focusing on participants’ descriptions of what constitutes a typical scene. We discuss how recent studies on memory and perception used methods like line drawings to characterize internal representations in unconstrained ways and on the level of individual participants. These emerging methods show that it is now time to also study natural scene perception from a different angle—starting with a characterization of an individual’s expectations about the world.
en
dc.format.extent
11 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
visual perception
en
dc.subject
scene representation
en
dc.subject
predictive processing
en
dc.subject
internal models
en
dc.subject
individual differences
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::570 Biowissenschaften; Biologie::570 Biowissenschaften; Biologie
dc.title
Characterizing internal models of the visual environment
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
20250602
dcterms.bibliographicCitation.doi
10.1098/rspb.2025.0602
dcterms.bibliographicCitation.journaltitle
Proceedings of the Royal Society B: Biological Sciences
dcterms.bibliographicCitation.number
2053
dcterms.bibliographicCitation.volume
292
dcterms.bibliographicCitation.url
https://doi.org/10.1098/rspb.2025.0602
refubium.affiliation
Erziehungswissenschaft und Psychologie
refubium.affiliation.other
Arbeitsbereich Neural Dynamics of Visual Cognition

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1471-2954
refubium.resourceType.provider
WoS-Alert