Rational points of elliptic curves are gems of the arithmetic theory. One mesure of the size of the group of rational points of an elliptic curve is its rank, this is the minimal number of rational points of the given elliptic curve needed to generate all of them. There is a lot of heuristics and conjectures regarding the rank, however no gen- eral method to compute it is known. To simplify the problem one asks: how does the rank behave on average? If we order elliptic curves defined over the rational numbers by their hight there is a recent result of Bahrgahav and Sankar saying that the average rank is bounded above by 1.5. Naturally one woulld like to get a similar statement for other cases, for example the function field case. Take a smooth, gemoetrically connected, projective curve over a finite field. Consider elliptic curves over the function field of the given curve and order them by their hight. In 2002 de Jong gave an upper bound for the average rank of elliptic curves over the function field of the projective line. To obtain the bound he counts integral models of geometric objects representing elements of certain groups (Mordell-Weil groups). The main objects of study of this dissertation are elliptic curves over function fields of elliptic curves. This work gives some progress in finding a bound for the average rank of elliptic curves over function fields of elliptic curves.
Die rationalen Punkte auf elliptischen Kurven gehören zu den wichtigsten Objekten der arithmetischen Theorie. Ein Messwert für die Größe der Gruppe der rationalen Punkte einer elliptischen Kurve ist ihr Rang. Dieser ist definiert, als die minimale Anzahl an rationalen Punkten auf der gegebenen elliptischen Kurve, die benötigt werden, um alle solche Punkte zu erzeugen. Es gibt bereits viele Heuristiken und Vermutungen bezüglich des Ranges, doch es ist keine allgemeine Methode bekannt, ihn zu bestimmen. Um das Problem zu vereinfachen, stellt man sich folgende Frage: Wie verhält sich der Rang im Durchschnitt? Ordnet man die über den rationalen Zahlen definierten elliptischen Kurven nach ihrer Höhe, so besagt ein erst kürzlich erzieltes Resultat von Bhargava und Shankar, dass der Rang nach oben durch 1,5 beschränkt ist. Selbstverständlich würde man auch gerne in anderen Fällen eine ähnliche Aussage erlangen,zum Beispiel im Falle eines Funktionenkörpers. Man betrachte eine glatte, geometrisch zusammenhängende, projektive Kurve über einem endlichen Körper und ordne die elliptischen Kurven über dem Funktionenkörper dieser gegebenen Kurve nach ihrer Höhe. In 2002 gab de Jong eine obere Schranke für den durchschnittlichen Rang elliptischer Kurven über dem Funktionenkörper der projektiven Geraden an. Für die Berechnung dieser Schranke, zählt er integre Modelle geometrischer Objekte, denn diese repräsentieren Elemente gewisser Gruppen. In erster Linie beschäftigt sich diese Dissertation mit elliptischen Kurven über Funktionenkörpern elliptischer Kurven und liefert Fortschritte über Schranken für den durchschnittlichen Rang solcher Kurven. Dabei wird hauptsächlich de Jongs Methode verwendet.