dc.contributor.author
McDonough, Alex
dc.contributor.author
Reitebuch, Ulrich
dc.contributor.author
Skrodzki, Martin
dc.date.accessioned
2025-09-15T06:31:37Z
dc.date.available
2025-09-15T06:31:37Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/49249
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-48971
dc.description.abstract
In various application fields, such as fluid-, cell-, or crowd-simulations, spatial data structures are very important. They answer nearest neighbor queries which are instrumental in performing necessary computations for, e.g., taking the next time step in the simulation. Correspondingly, various such data structures have been developed, one being the neighborhood grid.
In this paper, we consider combinatorial aspects of this data structure. Particularly, we show that an assumption on uniqueness, made in previous works, is not actually satisfied. We extend the notions of the neighborhood grid to arbitrary grid sizes and dimensions and provide two alternative, correct versions of the proof that was broken by the dissatisfied assumption.
Furthermore, we explore both the uniqueness of certain states of the data structure as well as when the number of these states is maximized. We provide a partial classification by using the hook-length formula for rectangular Young tableaux. Finally, we conjecture how to extend this to all 2-dimensional cases.
en
dc.format.extent
17 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Neighborhood grid
en
dc.subject
Young tableaux
en
dc.subject
Spatial data structure
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
Combinatorial and asymptotic results on the neighborhood grid
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1016/j.dam.2025.03.028
dcterms.bibliographicCitation.journaltitle
Discrete Applied Mathematics
dcterms.bibliographicCitation.pagestart
48
dcterms.bibliographicCitation.pageend
64
dcterms.bibliographicCitation.volume
372
dcterms.bibliographicCitation.url
https://doi.org/10.1016/j.dam.2025.03.028
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1872-6771
refubium.resourceType.provider
WoS-Alert