dc.contributor.author
Duffus, Benjamin R.
dc.contributor.author
Elvers, Benedict J.
dc.contributor.author
Teutloff, Christian
dc.contributor.author
Schulzke, Carola
dc.contributor.author
Leimkühler, Silke
dc.date.accessioned
2025-09-08T09:56:15Z
dc.date.available
2025-09-08T09:56:15Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/49147
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-48870
dc.description.abstract
Metal-dependent formate dehydrogenases (FDHs) are of considerable interest as a bioinspired metalloenzyme target to efficiently reduce the greenhouse gas CO2 into the portable energy carrier formate under physiological conditions. These enzymes were shown to harbor an active site sulfido ligand that is essential for the formate oxidation and CO2 reduction activity and contributes to the oxygen sensitivity of the enzyme, since the ligand is rapidly lost in the presence of O2. Inhibitors like azide or nitrate are routinely employed to protect the active site from oxidative damage. The demonstrated unitary in vitro sulfido ligand incorporation to the active site bis metal-binding pterin guanine dinucleotide (bis-MGD) cofactor in FDH from Rhodobacter capsulatus of this study also completely reactivates the enzyme. Reductive treatment with either sulfide or bisulfite, or with sodium dithionite under weakly acidic conditions in the strict absence of O2 resulted in comparable enzymatic activity to FDH purified after heterologous expression in Escherichia coli. Confirmation of the inserted sulfido ligand was afforded by EPR spectroscopy of a MoV intermediate species associated with MoS6 coordination. Specific insertion of a 33S sulfido ligand to the bis-MGD Mo evidenced the chemical insertion of the sulfido ligand and confirmed its role to serve in defining the electronic character of the sulfurated bis-MGD MoV-SH state. The relevance of these results, in relation to known in vitro sulfuration assays described for other molybdoenzymes, is discussed.
en
dc.format.extent
15 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
carbon dioxide
en
dc.subject
iron-sulfur protein
en
dc.subject
sulfur transfer
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
In vitro sulfuration of Rhodobacter capsulatus formate dehydrogenase
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
108511
dcterms.bibliographicCitation.doi
10.1016/j.jbc.2025.108511
dcterms.bibliographicCitation.journaltitle
Journal of Biological Chemistry (JBC)
dcterms.bibliographicCitation.number
6
dcterms.bibliographicCitation.volume
301
dcterms.bibliographicCitation.url
https://doi.org/10.1016/j.jbc.2025.108511
refubium.affiliation
Physik
refubium.affiliation.other
Institut für Experimentalphysik

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1083-351X
refubium.resourceType.provider
WoS-Alert