dc.contributor.author
Klauschen, Frederick
dc.contributor.author
Dippel, Jonas
dc.contributor.author
Keyl, Philipp
dc.contributor.author
Jurmeister, Philipp
dc.contributor.author
Bockmayr, Michael
dc.contributor.author
Mock, Andreas
dc.contributor.author
Buchstab, Oliver
dc.contributor.author
Alber, Maximilian
dc.contributor.author
Ruff, Lukas
dc.contributor.author
Montavon, Grégoire
dc.contributor.author
Müller, Klaus-Robert
dc.date.accessioned
2025-09-01T12:30:32Z
dc.date.available
2025-09-01T12:30:32Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/49033
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-48756
dc.description.abstract
The rapid development of precision medicine in recent years has started to challenge diagnostic pathology with respect to its ability to analyze histological images and increasingly large molecular profiling data in a quantitative, integrative, and standardized way. Artificial intelligence (AI) and, more precisely, deep learning technologies have recently demonstrated the potential to facilitate complex data analysis tasks, including clinical, histological, and molecular data for disease classification; tissue biomarker quantification; and clinical outcome prediction. This review provides a general introduction to AI and describes recent developments with a focus on applications in diagnostic pathology and beyond. We explain limitations including the black-box character of conventional AI and describe solutions to make machine learning decisions more transparent with so-called explainable AI. The purpose of the review is to foster a mutual understanding of both the biomedical and the AI side. To that end, in addition to providing an overview of the relevant foundations in pathology and machine learning, we present worked-through examples for a better practical understanding of what AI can achieve and how it should be done.
en
dc.format.extent
30 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
deep learning
en
dc.subject
explainable artificial intelligence
en
dc.subject.ddc
000 Informatik, Informationswissenschaft, allgemeine Werke::000 Informatik, Wissen, Systeme::004 Datenverarbeitung; Informatik
dc.title
Toward Explainable Artificial Intelligence for Precision Pathology
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1146/annurev-pathmechdis-051222-113147
dcterms.bibliographicCitation.journaltitle
Annual Review of Pathology: Mechanisms of Disease
dcterms.bibliographicCitation.pagestart
541
dcterms.bibliographicCitation.pageend
570
dcterms.bibliographicCitation.volume
19
dcterms.bibliographicCitation.url
https://doi.org/10.1146/annurev-pathmechdis-051222-113147
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Informatik

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1553-4014