dc.contributor.author
Naumann, Jan
dc.contributor.author
Weerda, Erik L.
dc.contributor.author
Eisert, Jens
dc.contributor.author
Rizzi, Matteo
dc.contributor.author
Schmoll, Philipp
dc.date.accessioned
2025-08-26T08:04:35Z
dc.date.available
2025-08-26T08:04:35Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/48871
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-48594
dc.description.abstract
Projected entangled-pair states (PEPS) have become a powerful tool for studying quantum many-body systems in the condensed matter and quantum materials context, particularly with advances in variational energy optimization methods. A key challenge within this framework is the computational cost associated with the contraction of the two-dimensional lattice, crucial for calculating state vector norms and expectation values. The conventional approach, using the corner transfer matrix renormalization group (CTMRG), involves combining two tensor network layers, resulting in significant time and memory demands. In this work, we introduce an alternative split-CTMRG algorithm, which maintains separate PEPS layers and leverages modified environment tensors, reducing computational complexity while preserving accuracy. Benchmarks on quantum lattice models demonstrate substantial speedups for variational energy optimization, rendering this method valuable for large-scale PEPS simulations.
en
dc.format.extent
12 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Frustrated magnetism
en
dc.subject
Honeycomb lattice
en
dc.subject
Strongly correlated systems
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
Variationally optimizing infinite projected entangled-pair states at large bond dimensions: A split corner transfer matrix renormalization group approach
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
235116
dcterms.bibliographicCitation.doi
10.1103/PhysRevB.111.235116
dcterms.bibliographicCitation.journaltitle
Physical Review B
dcterms.bibliographicCitation.number
23
dcterms.bibliographicCitation.volume
111
dcterms.bibliographicCitation.url
https://doi.org/10.1103/PhysRevB.111.235116
refubium.affiliation
Physik
refubium.affiliation.other
Dahlem Center für komplexe Quantensysteme

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2469-9969
refubium.resourceType.provider
WoS-Alert