dc.contributor.author
She, Yiting
dc.contributor.author
Engelbrecht, Vera
dc.contributor.author
Kozuch, Jacek
dc.contributor.author
Apfel, Ulf-Peter
dc.contributor.author
Stripp, Sven T.
dc.contributor.author
Hemschemeier, Anja
dc.contributor.author
Happe, Thomas
dc.date.accessioned
2025-09-26T13:38:21Z
dc.date.available
2025-09-26T13:38:21Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/48824
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-48547
dc.description.abstract
Current attempts to transform our fossil fuel-based society into a sustainable one involve learning from and employing the biochemistry of nature. The process of photosynthesis is exemplary for utilizing sunlight as a regenerative energy source. Enzymes like hydrogenases, which reduce protons to molecular hydrogen (H2) under ambient conditions, are model biocatalysts for generating sustainable, clean fuels. In green algae, photosynthesis and hydrogenases are coupled through ferredoxin, a small electron transfer protein. Here, it is shown that several plant-type ferredoxins can interact with a chemically synthesized active site cofactor analog of [FeFe]-hydrogenases in a way that allows comparably high H2 evolution rates. UV–vis and Fourier-transform infrared spectroscopy indicate that the natural [2Fe-2S] clusters of the ferredoxin hosts must be absent for a functional interaction of polypeptide and cofactor mimic and that the apo-ferredoxins shield the H2-producing cofactor from the solvent. The hybrid proteins exhibited higher O2 tolerance than natural [FeFe]-hydrogenases and generated H2 in light-dependent cascades based on photosystem I or the chemical photosensitizer proflavine. These features and the combination of natural hosts and cofactors might contribute to establishing sustainable light-dependent H2 production systems.
en
dc.format.extent
14 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
artificial metalloenzymes
en
dc.subject
photocatalytic hydrogen production
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::540 Chemie::540 Chemie und zugeordnete Wissenschaften
dc.title
Hydrogen-Producing Catalysts Based on Ferredoxin Scaffolds
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
e01897
dcterms.bibliographicCitation.doi
10.1002/advs.202501897
dcterms.bibliographicCitation.journaltitle
Advanced Science
dcterms.bibliographicCitation.number
33
dcterms.bibliographicCitation.volume
12
dcterms.bibliographicCitation.url
https://doi.org/10.1002/advs.202501897
refubium.affiliation
Physik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2198-3844
refubium.resourceType.provider
WoS-Alert