dc.contributor.author
Ma, Guoxin
dc.contributor.author
Dimde, Mathias
dc.contributor.author
Ludwig, Kai
dc.contributor.author
Abidal, Latifa
dc.contributor.author
Adler, Julia M.
dc.contributor.author
Vidal, Ricardo Martin
dc.contributor.author
Kaufer, Benedikt B.
dc.contributor.author
Trimpert, Jakob
dc.contributor.author
Nie, Chuanxiong
dc.contributor.author
Haag, Rainer
dc.date.accessioned
2025-09-26T13:28:05Z
dc.date.available
2025-09-26T13:28:05Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/48722
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-48447
dc.description.abstract
3D nanosystems equipped with polysulfates as binding sites are effective virus inhibitors due to their ability to dynamically deform while adhering to a virus. Here, a new supramolecular nanosystem assembled from a block copolymer consisting of sulfated linear polyglycerol and polytrimethylene carbonate is presented. It exhibits a unique morphology, 100 nm sized spheres with a distinct brush-like corona. The negatively charged sulfates are distributed on the outer shell and enable exceptional homogeneity of the particles, thereby enhancing the efficiency of multivalent interactions. Various sulfation levels are tested and demonstrated extremely low half-maximal inhibition concentration (IC50) values in plaque reduction assays tested on herpes simplex virus type-1 (HSV-1): 0.43, 0.16, and 0.037 µg mL−1 of the 45%, 76% and 100% sulfated assemblies, respectively. Using cryo electron microscopy (cryo-EM), viruses trapped are observed by multiple layers of the nano-assemblies. Both 76% and 100% sulfated assemblies show therapeutic potential in the post-infection model. The inhibitory behavior of the 76% and 100% sulfated assemblies is further confirmed against Omicron infection. This work demonstrates that the presented 3D flexible nano-assemblies can block the virus entry into the host cells with superior morphology and efficiency, establishing them as a promising candidate for antiviral applications.
en
dc.format.extent
8 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
antiviral nanoassembly
en
dc.subject
multivalent nanosystems
en
dc.subject
polysulfates
en
dc.subject
virus inhibition
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::540 Chemie::540 Chemie und zugeordnete Wissenschaften
dc.title
Bioactive Polysulfate-Based Nano-Assemblies Against Virus Infection
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
e04384
dcterms.bibliographicCitation.doi
10.1002/smll.202504384
dcterms.bibliographicCitation.journaltitle
Small
dcterms.bibliographicCitation.number
36
dcterms.bibliographicCitation.volume
21
dcterms.bibliographicCitation.url
https://doi.org/10.1002/smll.202504384
refubium.affiliation
Biologie, Chemie, Pharmazie
refubium.affiliation
Veterinärmedizin
refubium.affiliation.other
Institut für Chemie und Biochemie

refubium.affiliation.other
Institut für Virologie

refubium.funding
DEAL Wiley
refubium.note.author
Gefördert aus Open-Access-Mitteln der Freien Universität Berlin.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1613-6829