dc.contributor.author
Glaser, Viktor
dc.contributor.author
Flugel, Christian
dc.contributor.author
Kath, Jonas
dc.contributor.author
Du, Weijie
dc.contributor.author
Drosdek, Vanessa
dc.contributor.author
Franke, Clemens
dc.contributor.author
Stein, Maik
dc.contributor.author
Pruß, Axel
dc.contributor.author
Schmueck-Henneresse, Michael
dc.contributor.author
Volk, Hans-Dieter
dc.contributor.author
Reinke, Petra
dc.contributor.author
Wagner, Dimitrios L.
dc.date.accessioned
2025-08-12T10:13:40Z
dc.date.available
2025-08-12T10:13:40Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/48662
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-48386
dc.description.abstract
Background: Multiple genetic modifications may be required to develop potent off-the-shelf chimeric antigen receptor (CAR) T cell therapies. Conventional CRISPR-Cas nucleases install sequence-specific DNA double-strand breaks (DSBs), enabling gene knock-out or targeted transgene knock-in. However, simultaneous DSBs provoke a high rate of genomic rearrangements which may impede the safety of the edited cells.Results: Here, we combine a non-viral CRISPR-Cas9 nuclease-assisted knock-in and Cas9-derived base editing technology for DSB free knock-outs within a single intervention. We demonstrate efficient insertion of a CAR into the T cell receptor alpha constant (TRAC) gene, along with two knock-outs that silence major histocompatibility complexes (MHC) class I and II expression. This approach reduces translocations to 1.4% of edited cells. Small insertions and deletions at the base editing target sites indicate guide RNA exchange between the editors. This is overcome by using CRISPR enzymes of distinct evolutionary origins. Combining Cas12a Ultra for CAR knock-in and a Cas9-derived base editor enables the efficient generation of triple-edited CAR T cells with a translocation frequency comparable to unedited T cells. Resulting TCR- and MHC-negative CAR T cells resist allogeneic T cell targeting in vitro.Conclusions: We outline a solution for non-viral CAR gene transfer and efficient gene silencing using different CRISPR enzymes for knock-in and base editing to prevent translocations. This single-step procedure may enable safer multiplex-edited cell products and demonstrates a path towards off-the-shelf CAR therapeutics.
en
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
base editing
en
dc.subject.ddc
600 Technik, Medizin, angewandte Wissenschaften::610 Medizin und Gesundheit::610 Medizin und Gesundheit
dc.title
Combining different CRISPR nucleases for simultaneous knock-in and base editing prevents translocations in multiplex-edited CAR T cells
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
89
dcterms.bibliographicCitation.doi
10.1186/s13059-023-02928-7
dcterms.bibliographicCitation.journaltitle
Genome Biology
dcterms.bibliographicCitation.number
1
dcterms.bibliographicCitation.originalpublishername
Springer Nature
dcterms.bibliographicCitation.volume
24
refubium.affiliation
Charité - Universitätsmedizin Berlin
refubium.funding
Springer Nature DEAL
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.bibliographicCitation.pmid
37095570
dcterms.isPartOf.eissn
1474-760X