dc.contributor.author
Mattusch, Chiara
dc.contributor.author
Bick, Ulrich
dc.contributor.author
Michallek, Florian
dc.date.accessioned
2025-08-05T15:21:35Z
dc.date.available
2025-08-05T15:21:35Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/48590
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-48314
dc.description.abstract
Background
Patient motion can degrade image quality of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) due to subtraction artifacts. By objectively and subjectively assessing the impact of principal component analysis (PCA)-based registration on pretreatment DCE-MRIs of breast cancer patients, we aim to validate four-dimensional registration for DCE breast MRI.
Results
After applying a four-dimensional, PCA-based registration algorithm to 154 pretreatment DCE-MRIs of histopathologically well-described breast cancer patients, we quantitatively determined image quality in unregistered and registered images. For subjective assessment, we ranked motion severity in a clinical reading setting according to four motion categories (0: no motion, 1: mild motion, 2: moderate motion, 3: severe motion with nondiagnostic image quality). The median of images with either moderate or severe motion (median category 2, IQR 0) was reassigned to motion category 1 (IQR 0) after registration. Motion category and motion reduction by registration were correlated (Spearman’s rho: 0.83, p < 0.001). For objective assessment, we performed perfusion model fitting using the extended Tofts model and calculated its volume transfer coefficient Ktrans as surrogate parameter for motion artifacts. Mean Ktrans decreased from 0.103 (± 0.077) before registration to 0.097 (± 0.070) after registration (p < 0.001). Uncertainty in perfusion quantification was reduced by 7.4% after registration (± 15.5, p < 0.001).
Conclusions
Four-dimensional, PCA-based image registration improves image quality of breast DCE-MRI by correcting for motion artifacts in subtraction images and reduces uncertainty in quantitative perfusion modeling. The improvement is most pronounced when moderate-to-severe motion artifacts are present.
en
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
dynamic contrast-enhanced
en
dc.subject
principal component analysis
en
dc.subject
registration
en
dc.subject
breast cancer
en
dc.subject.ddc
600 Technik, Medizin, angewandte Wissenschaften::610 Medizin und Gesundheit::610 Medizin und Gesundheit
dc.title
Development and validation of a four-dimensional registration technique for DCE breast MRI
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
17
dcterms.bibliographicCitation.doi
10.1186/s13244-022-01362-w
dcterms.bibliographicCitation.journaltitle
Insights into Imaging
dcterms.bibliographicCitation.number
1
dcterms.bibliographicCitation.originalpublishername
Springer Nature
dcterms.bibliographicCitation.volume
14
refubium.affiliation
Charité - Universitätsmedizin Berlin
refubium.funding
Springer Nature DEAL
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.bibliographicCitation.pmid
36701001
dcterms.isPartOf.eissn
1869-4101