Glycans are biologically important molecules that are difficult to synthesize and analyze due to their structural diversity and conformational flexibility. Stereoselective glycosylation reactions are key to achieving high‐yielding glycan syntheses. The stereochemical outcome of glycosylations is significantly influenced by factors such as the choice of activator and leaving group systems, solvent type, temperature, concentration, and stoichiometry. We introduce a flow chemistry approach to efficiently screen glycosylation conditions, using minimal material and time to enable a rapid design‐make‐test‐analyze cycle with precise parameter control for reaction optimization. Ion mobility spectrometry provides rapid separation and analysis of crude glycosylation reaction mixtures that requires less method development than liquid chromatography thus making it a valuable tool for optimizing glycosylation reactions.