dc.contributor.author
Heltmann‐Meyer, Stefanie
dc.contributor.author
Detsch, Rainer
dc.contributor.author
Hazur, Jonas
dc.contributor.author
Kling, Lasse
dc.contributor.author
Pechmann, Sabrina
dc.contributor.author
Kolan, Rajkumar Reddy
dc.contributor.author
Osterloh, Justus
dc.contributor.author
Boccaccini, Aldo R.
dc.contributor.author
Christiansen, Silke
dc.contributor.author
Geppert, Carol I.
dc.contributor.author
Arkudas, Andreas
dc.contributor.author
Horch, Raymund E.
dc.contributor.author
Steiner, Dominik
dc.date.accessioned
2025-07-28T12:28:09Z
dc.date.available
2025-07-28T12:28:09Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/48429
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-48151
dc.description.abstract
The creation of bioartificial tissues is a promising option for the reconstruction of large‐volume defects. The vascularization of tissue engineering constructs, as well as the material properties of the carrier matrix, are important factors for successful clinical application. In this regard, hydrogels are promising biomaterials, providing an extracellular matrix‐like milieu that enables the possibility of cell transplantation and de novo tissue formation. Furthermore, biofunctionalization allows for a certain fine‐tuning of angiogenic properties. This study aims to investigate vascularization and tissue formation of highly cross‐linked alginate dialdehyde (ADA) and gelatin (GEL). This highly cross‐linked network is created using a dural cross‐linking mechanism combining ionic (Ca 2+ ions) and enzymatic (human transglutaminase (hTG)) cross‐linking, resulting in reduced swelling and moderate degradation rates. Vascularization of the ADA‐GEL‐hTG constructs is induced surgically using arteriovenous (AV) loops. Biocompatibility, tissue formation, and vascularization are analyzed by histology and X‐ray microscopy. After only 2 weeks, vascularization of the ADA‐GEL‐hTG constructs is already present. After 4 weeks, both de novo tissue formation and vascularization of the ADA‐GEL‐hTG matrix increase. In conclusion, ADA‐GEL‐hTG‐based hydrogels are shown to be promising scaffold materials for tissue engineering applications.
en
dc.format.extent
11 Seiten
dc.rights
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
angiogenesis
en
dc.subject
biofunctionalization
en
dc.subject
tissue engineering
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::540 Chemie::540 Chemie und zugeordnete Wissenschaften
dc.title
Biofunctionalization of ADA‐GEL Hydrogels Based on the Degree of Cross‐Linking and Polymer Concentration Improves Angiogenesis
dc.type
Wissenschaftlicher Artikel
dc.date.updated
2025-07-18T14:50:45Z
dcterms.bibliographicCitation.articlenumber
2500730
dcterms.bibliographicCitation.doi
10.1002/adhm.202500730
dcterms.bibliographicCitation.journaltitle
Advanced Healthcare Materials
dcterms.bibliographicCitation.number
11
dcterms.bibliographicCitation.volume
14
dcterms.bibliographicCitation.url
https://doi.org/10.1002/adhm.202500730
refubium.affiliation
Physik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
2192-2640
dcterms.isPartOf.eissn
2192-2659
refubium.resourceType.provider
DeepGreen