dc.contributor.author
Diaz-Naufal, Nicolas
dc.contributor.author
Deeg, L.
dc.contributor.author
Zoepfl, D.
dc.contributor.author
Schneider, C. M. F.
dc.contributor.author
Juan, M. L.
dc.contributor.author
Kirchmair, G.
dc.contributor.author
Metelmann, Anja
dc.date.accessioned
2025-06-06T09:21:12Z
dc.date.available
2025-06-06T09:21:12Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/47870
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-47588
dc.description.abstract
Dynamical backaction cooling has been demonstrated to be a successful method for achieving the motional quantum ground state of a mechanical oscillator in the resolved-sideband regime, where the mechanical frequency is significantly larger than the cavity decay rate. Nevertheless, as mechanical systems increase in size, their frequencies naturally decrease, thus bringing them into the unresolved-sideband regime, where the effectiveness of the sideband cooling approach decreases. Here we demonstrate, however, that this cooling technique in the unresolved-sideband regime can be significantly enhanced by utilizing a nonlinear cavity as shown in the experimental work of Zoepfl et al. [Phys. Rev. Lett. 130, 033601 (2023)]. The above arises due to the increased asymmetry between the cooling and heating processes, thereby improving the cooling efficiency. In addition, we show that injecting a squeezed vacuum into the nonlinear cavity paves the way to ground-state cooling of the mechanical mode. Notably, the required squeezing parameters are far less stringent than in the linear case, simplifying experimental implementation.
en
dc.format.extent
15 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Open quantum systems
en
dc.subject
Optomechanics
en
dc.subject
Micromechanical & nanomechanical oscillators
en
dc.subject
Quantum cavities
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
Kerr-enhanced optomechanical cooling in the unresolved-sideband regime
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
053505
dcterms.bibliographicCitation.doi
10.1103/PhysRevA.111.053505
dcterms.bibliographicCitation.journaltitle
Physical Review A
dcterms.bibliographicCitation.number
5
dcterms.bibliographicCitation.volume
111
dcterms.bibliographicCitation.url
https://doi.org/10.1103/PhysRevA.111.053505
refubium.affiliation
Physik
refubium.affiliation.other
Dahlem Center für komplexe Quantensysteme

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2469-9934
refubium.resourceType.provider
WoS-Alert