dc.contributor.author
Nielsen, Jens A. H.
dc.contributor.author
Kicinski, Mateusz J.
dc.contributor.author
Arge, Tummas N.
dc.contributor.author
Vijayadharan, Kannan
dc.contributor.author
Foldager, Jonathan
dc.contributor.author
Borregaard, Johannes
dc.contributor.author
Meyer, Johannes Jakob
dc.contributor.author
Neergaard-Nielsen, Jonas S.
dc.contributor.author
Gehring, Tobias
dc.contributor.author
Andersen, Ulrik L.
dc.date.accessioned
2025-06-06T07:58:26Z
dc.date.available
2025-06-06T07:58:26Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/47860
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-47578
dc.description.abstract
Variational quantum algorithms (VQAs) are hybrid quantum-classical approaches used for tackling a wide range of problems on noisy intermediate-scale quantum (NISQ) devices. Testing these algorithms on relevant hardware is crucial to investigate the effect of noise and imperfections and to assess their practical value. Here, we implement a variational algorithm designed for optimized parameter estimation on a continuous variable platform based on squeezed light, a key component for high-precision optical phase estimation. We investigate the ability of the algorithm to identify the optimal metrology process, including the optimization of the probe state and measurement strategy for small-angle optical phase sensing. Two different optimization strategies are employed, the first being a gradient descent optimizer using Gaussian parameter shift rules to estimate the gradient of the cost function directly from the measurements. The second strategy involves a gradient-free Bayesian optimizer, fine-tuning the system using the same cost function and trained on the data acquired through the gradient-dependent algorithm. We find that both algorithms can steer the experiment towards the optimal metrology process. However, they find minima not predicted by our theoretical model, demonstrating the strength of variational algorithms in modelling complex noise environments, a non-trivial task.
en
dc.format.extent
14 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject
Quantum information
en
dc.subject
Quantum metrology
en
dc.subject
Variational quantum algorithms
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
Variational quantum algorithm for enhanced continuous variable optical phase sensing
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
70
dcterms.bibliographicCitation.doi
10.1038/s41534-024-00947-1
dcterms.bibliographicCitation.journaltitle
npj Quantum Information
dcterms.bibliographicCitation.number
1
dcterms.bibliographicCitation.volume
11
dcterms.bibliographicCitation.url
https://doi.org/10.1038/s41534-024-00947-1
refubium.affiliation
Physik
refubium.affiliation.other
Dahlem Center für komplexe Quantensysteme

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2056-6387
refubium.resourceType.provider
WoS-Alert