dc.contributor.author
Birkbeck, J.
dc.contributor.author
Xiao, J.
dc.contributor.author
Inbar, A.
dc.contributor.author
Taniguchi, T.
dc.contributor.author
Watanabe, K.
dc.contributor.author
Berg, E.
dc.contributor.author
Glazman, L.
dc.contributor.author
Guinea, F.
dc.contributor.author
Oppen, Felix von
dc.contributor.author
Ilani, S.
dc.date.accessioned
2025-06-06T07:51:02Z
dc.date.available
2025-06-06T07:51:02Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/47859
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-47577
dc.description.abstract
The coupling between electrons and phonons is one of the fundamental interactions in solids, underpinning a wide range of phenomena, such as resistivity, heat conductivity and superconductivity. However, direct measurements of this coupling for individual phonon modes remain a substantial challenge. In this work, we introduce a new technique for mapping phonon dispersions and electron–phonon coupling (EPC) in van der Waals (vdW) materials. By generalizing the quantum twisting microscope1 (QTM) to cryogenic temperatures, we demonstrate its capability to map not only electronic dispersions through elastic momentum-conserving tunnelling but also phononic dispersions through inelastic momentum-conserving tunnelling. Crucially, the inelastic tunnelling strength provides a direct and quantitative measure of the momentum and mode-resolved EPC. We use this technique to measure the phonon spectrum and EPC of twisted bilayer graphene (TBG) with twist angles larger than 6°. Notably, we find that, unlike standard acoustic phonons, whose coupling to electrons diminishes as their momentum tends to zero, TBG exhibits a low-energy mode whose coupling increases with decreasing twist angle. We show that this unusual coupling arises from the modulation of the interlayer tunnelling by a layer-antisymmetric ‘phason’ mode of the moiré system. The technique demonstrated here opens the way for examining a large variety of other neutral collective modes that couple to electronic tunnelling, including plasmons2, magnons3 and spinons4 in quantum materials.
en
dc.format.extent
25 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject
Electronic properties and materials
en
dc.subject
Scanning probe microscopy
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
Quantum twisting microscopy of phonons in twisted bilayer graphene
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1038/s41586-025-08881-8
dcterms.bibliographicCitation.journaltitle
Nature
dcterms.bibliographicCitation.number
8062
dcterms.bibliographicCitation.pagestart
345
dcterms.bibliographicCitation.pageend
351
dcterms.bibliographicCitation.volume
641
dcterms.bibliographicCitation.url
https://doi.org/10.1038/s41586-025-08881-8
refubium.affiliation
Physik
refubium.affiliation.other
Dahlem Center für komplexe Quantensysteme

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1476-4687
refubium.resourceType.provider
WoS-Alert