dc.contributor.author
Gu, Andi
dc.contributor.author
Oliviero, Salvatore F. E.
dc.contributor.author
Leone, Lorenzo
dc.date.accessioned
2025-06-04T08:54:04Z
dc.date.available
2025-06-04T08:54:04Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/47824
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-47542
dc.description.abstract
Entanglement serves as a foundational pillar in quantum information theory, delineating the boundary between what is classical and what is quantum. The common assumption is that a higher degree of entanglement corresponds to a greater degree of “quantumness.” However, this folk belief is challenged by the fact that classically simulable operations, such as Clifford circuits, can create highly entangled states. The simulability of these states raises the question: What are the differences between “low-magic” entanglement and “high-magic” entanglement? To understand this interplay between entanglement and magic, we take an operational approach by studying tasks such as entanglement estimation, distillation, and dilution. We uncover a separation of Hilbert space into two distinct regimes: the entanglement-dominated (ED) phase, where entanglement surpasses magic, and the magic-dominated (MD) phase, where magic dominates entanglement. This separation induces a computational phase transition: entanglement-related tasks are efficiently solvable in the ED phase, but become intractable in the MD phase. Our results find applications in diverse areas such as quantum error correction, many-body physics, and the study of quantum chaos, providing a unifying framework for understanding the behavior of quantum systems. We also offer theoretical explanations for previous numerical observations, highlighting the broad implications of the ED-MD distinction across various subfields of physics.
en
dc.format.extent
47 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Entanglement detection
en
dc.subject
Entanglement measures
en
dc.subject
Quantum circuits
en
dc.subject
Quantum computation
en
dc.subject
Quantum correlations in quantum information
en
dc.subject
Quantum entanglement
en
dc.subject
Quantum error correction
en
dc.subject
Quantum information theory
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
Magic-Induced Computational Separation in Entanglement Theory
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
020324
dcterms.bibliographicCitation.doi
10.1103/PRXQuantum.6.020324
dcterms.bibliographicCitation.journaltitle
PRX Quantum
dcterms.bibliographicCitation.number
2
dcterms.bibliographicCitation.volume
6
dcterms.bibliographicCitation.url
https://doi.org/10.1103/PRXQuantum.6.020324
refubium.affiliation
Physik
refubium.affiliation.other
Dahlem Center für komplexe Quantensysteme

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2691-3399
refubium.resourceType.provider
WoS-Alert