dc.contributor.author
Chen, Xin
dc.contributor.author
Wolff, Stefan
dc.contributor.author
Zuieva, Sofiia
dc.contributor.author
Schusterbauer, Robert
dc.contributor.author
Shaikh, Rida
dc.contributor.author
Halbig, Christian E.
dc.contributor.author
Habel, Anton
dc.contributor.author
Gillen, Roland
dc.contributor.author
Knirsch, Kathrin C.
dc.contributor.author
Donskyi, Ievgen
dc.contributor.author
Eigler, Siegfried
dc.contributor.author
Maultzsch, Janina
dc.contributor.author
Hirsch, Andreas
dc.date.accessioned
2025-10-31T06:54:43Z
dc.date.available
2025-10-31T06:54:43Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/47785
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-47503
dc.description.abstract
Connecting two-dimensional (2D) material layers via interface linkers represents a new avenue for fabricating 2D heterostructures. Utilizing light to remotely modulate this interface function allows for seamless assembly and patterning in a single run. Here, an efficient method for fabricating patterned 2D heterostructures using direct laser writing is demonstrated, drawing a conceptual parallel to laser printing. In the approach, functionalized transition metal dichalcogenide (TMD) dispersions serve as inks, graphene as the substrate, and a Raman laser as the patterning tool. Unlike laser printing's electrostatic interactions, the method achieves patterned assembly through covalent bonding between TMDs and graphene. Selective Raman laser irradiation of functionalized TMD/graphene heterostructures triggers localized reactions, forming chemically modified domains exclusively in the laser-irradiated regions, as confirmed by Raman spectroscopy, Kelvin probe force microscopy (KPFM), and time-of-flight secondary ion mass spectrometry (ToF-SIMS). Experimental and theoretical analyses of the interface composition and structure provide new insights into laser-induced chemistry. The work demonstrates the potential for high-throughput assembly of customizable 2D heterostructures, with enhanced compatibility for subsequent patterning through photolabile linkers and photoinduced coupling. Additionally, the results provide deeper insights into chemistry within confined 2D spaces, offering a novel approach to nanoscale heterostructure engineering.
en
dc.format.extent
9 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
2D heterostructures
en
dc.subject
interface engineering
en
dc.subject
laser writing
en
dc.subject
transition metal dichalcogenides
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::540 Chemie::541 Physikalische Chemie
dc.title
Patterned Assembly of Transition Metal Dichalcogenide/Graphene Heterostructures via Direct Laser Writing
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
2425776
dcterms.bibliographicCitation.doi
10.1002/adfm.202425776
dcterms.bibliographicCitation.journaltitle
Advanced Functional Materials
dcterms.bibliographicCitation.number
43
dcterms.bibliographicCitation.volume
35
dcterms.bibliographicCitation.url
https://doi.org/10.1002/adfm.202425776
refubium.affiliation
Biologie, Chemie, Pharmazie
refubium.affiliation.other
Institut für Chemie und Biochemie

refubium.funding
DEAL Wiley
refubium.note.author
Gefördert aus Open-Access-Mitteln der Freien Universität Berlin.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1616-3028