dc.contributor.author
Merzdorf, Thomas
dc.contributor.author
Guo, An
dc.contributor.author
Schröer, Pierre
dc.contributor.author
Hornberger, Elisabeth
dc.contributor.author
Ott, Sebastian
dc.contributor.author
Riebel, Laurin
dc.contributor.author
Hübner, Jessica
dc.contributor.author
Liang, Liang
dc.contributor.author
Klingenhof, Malte
dc.contributor.author
Kroschel, Matthias
dc.contributor.author
Hußmann, Marleen
dc.contributor.author
Eigler, Siegfried
dc.contributor.author
Kozhushner, Alisa
dc.contributor.author
Elbaz, Lior
dc.contributor.author
Strasser, Peter
dc.date.accessioned
2025-05-26T09:07:12Z
dc.date.available
2025-05-26T09:07:12Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/47745
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-47463
dc.description.abstract
Carbon supports play a crucial role in the performance and durability of the proton exchange membrane fuel cell (PEMFC). The porosity of carbon particles and the carbon matrix, as well as the surface area, is essential for good transport of oxygen, water and electrons. In this work, the synthesis and characterization of extremely high surface-area, mesoporous carbon nanodendrites (MCNDs) formed by controlled detonation are presented. This new carbon material is used as a cathode catalyst's support material in PEMFCs. Annealed at three different temperatures and compared to commercial carbon supports, the graphitization and ordering degree of the carbons are investigated. Pt nanoparticles are deposited on all support materials using a novel fluidized bed reduction reactor. MCND-based Pt nanoparticle fuel cell cathodes significantly outperform Pt catalysts on commercial carbons in single cell tests in PEMFCs. Online carbon degradation quantification reveals that, due to its unique porous structure and high surface area, corrosive high anodic cell potential cycling leads to pore collapse and hence should be avoided for this kind of support material. This behavior is reduced with higher annealing temperatures.
en
dc.format.extent
9 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
detonation synthesis
en
dc.subject
characterization
en
dc.subject
High surface area mesoporous carbon nanodendrites
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::540 Chemie::540 Chemie und zugeordnete Wissenschaften
dc.title
High surface area mesoporous carbon nanodendrites – detonation synthesis, characterization and use as a novel electrocatalyst support material
dc.type
Wissenschaftlicher Artikel
dc.date.updated
2025-05-23T11:36:25Z
dcterms.bibliographicCitation.doi
10.1039/D4TA07621D
dcterms.bibliographicCitation.journaltitle
Journal of Materials Chemistry A
dcterms.bibliographicCitation.number
18
dcterms.bibliographicCitation.pagestart
13126
dcterms.bibliographicCitation.pageend
13134
dcterms.bibliographicCitation.volume
13
dcterms.bibliographicCitation.url
https://doi.org/10.1039/D4TA07621D
refubium.affiliation
Biologie, Chemie, Pharmazie
refubium.affiliation.other
Institut für Chemie und Biochemie

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
2050-7488
dcterms.isPartOf.eissn
2050-7496
refubium.resourceType.provider
DeepGreen