dc.contributor.author
Zhong, Xin
dc.contributor.author
Höfling, Felix
dc.contributor.author
John, Timm
dc.date.accessioned
2025-05-07T08:19:32Z
dc.date.available
2025-05-07T08:19:32Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/47558
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-47276
dc.description.abstract
Garnet has been widely used to decipher the pressure‐temperature‐time history of rocks, but its physical properties such as elasticity and diffusion are strongly affected by trace amounts of hydrogen. Experimental measurements of H diffusion in garnet are limited to room pressure. We use atomistic simulations to study H diffusion in perfect and defective garnet lattices, focusing on protonation defects at the Si and Mg sites, which are shown to be energetically favored. Transient trapping of H renders ab‐initio simulations of H diffusion computationally challenging, which is overcome with machine learning techniques by training a deep neural network that encodes the interatomic potential. Our results from such deep potential molecular dynamics (DeePMD) simulations show high mobility of hydrogen in defect‐free garnet lattices, whereas H diffusivity is significantly diminished in defective lattices. Tracer simulations focusing on H alone highlight the vital role of atomic vibrations of heavier atoms like Mg on the release of H atoms. Two regimes of H diffusion are identified: a diffuser‐dominated regime at high hydrogen content with low activation energies due to saturation of vacancies by hydrogen, and a vacancy‐dominated regime at low hydrogen content with high activation energies due to trapping of H atoms at vacancy sites. These regimes account for experimental observations, such as a H‐concentration dependent diffusivity and the discrepancy in activation energy between deprotonation and D‐H exchange experiments. This study underpins the crucial role of vacancies in H diffusion and demonstrates the utility of machine‐learned interatomic potentials in studying kinetic processes in the Earth's interior.
en
dc.format.extent
21 Seiten
dc.rights
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
hydrogen diffusion
en
dc.subject
lattice defects
en
dc.subject
ab initio molecular dynamics
en
dc.subject
machine learning interatomic potentials
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::550 Geowissenschaften, Geologie::550 Geowissenschaften
dc.title
Hydrogen Diffusion in Garnet: Insights From Atomistic Simulations
dc.type
Wissenschaftlicher Artikel
dc.date.updated
2025-05-06T09:10:40Z
dcterms.bibliographicCitation.articlenumber
e2024GC011951
dcterms.bibliographicCitation.doi
10.1029/2024GC011951
dcterms.bibliographicCitation.journaltitle
Geochemistry, Geophysics, Geosystems
dcterms.bibliographicCitation.number
2
dcterms.bibliographicCitation.volume
26
dcterms.bibliographicCitation.url
https://doi.org/10.1029/2024GC011951
refubium.affiliation
Geowissenschaften
refubium.affiliation.other
Institut für Geologische Wissenschaften / Fachrichtung Geochemie, Hydrogeologie, Mineralogie

refubium.affiliation.other
Institut für Mathematik

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1525-2027
refubium.resourceType.provider
DeepGreen