dc.contributor.author
Ackermann, Richard
dc.date.accessioned
2025-04-29T10:39:05Z
dc.date.available
2025-04-29T10:39:05Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/47467
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-47185
dc.description.abstract
The aim of this thesis is to present the Riemann zeta function, its analytic properties, as well as its analytic and number theoretic applications in a way that is comprehensible to a reader who has a basic understanding of complex analysis. Among other things, some visualizations of the zeta function in the critical strip will be given, the universality theorem will be proven, and the connection to the prime numbers will be explained.
en
dc.format.extent
49 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
zeta function
en
dc.subject
complex analysis
en
dc.subject
number theory
en
dc.subject
universality theorem
en
dc.subject
Riemann hypothesis
en
dc.subject
prime numbers
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::515 Analysis
dc.title
The Riemann Zeta Function and its Properties
dc.identifier.urn
urn:nbn:de:kobv:188-refubium-47467-5
dc.title.translated
Die Riemannsche Zetafunktion und ihre Eigenschaften
de
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik

refubium.resourceType.isindependentpub
yes
dcterms.accessRights.dnb
free
dcterms.accessRights.openaire
open access