dc.contributor.author
Brändl, Björn
dc.contributor.author
Steiger, Mara
dc.contributor.author
Kubelt, Carolin
dc.contributor.author
Rohrandt, Christian
dc.contributor.author
Zhu, Zhihan
dc.contributor.author
Evers, Maximilian
dc.contributor.author
Wang, Gaojianyong
dc.contributor.author
Schuldt, Bernhard
dc.contributor.author
Afflerbach, Ann-Kristin
dc.contributor.author
Wong, Derek
dc.date.accessioned
2025-04-17T05:49:29Z
dc.date.available
2025-04-17T05:49:29Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/47416
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-47134
dc.description.abstract
Although the intraoperative molecular diagnosis of the approximately 100 known brain tumor entities described to date has been a goal of neuropathology for the past decade, achieving this within a clinically relevant timeframe of under 1 h after biopsy collection remains elusive. Advances in third-generation sequencing have brought this goal closer, but established machine learning techniques rely on computationally intensive methods, making them impractical for live diagnostic workflows in clinical applications. Here we present MethyLYZR, a naive Bayesian framework enabling fully tractable, live classification of cancer epigenomes. For evaluation, we used nanopore sequencing to classify over 200 brain tumor samples, including 10 sequenced in a clinical setting next to the operating room, achieving highly accurate results within 15 min of sequencing. MethyLYZR can be run in parallel with an ongoing nanopore experiment with negligible computational overhead. Therefore, the only limiting factors for even faster time to results are DNA extraction time and the nanopore sequencer’s maximum parallel throughput. Although more evidence from prospective studies is needed, our study suggests the potential applicability of MethyLYZR for live molecular classification of nervous system malignancies using nanopore sequencing not only for the neurosurgical intraoperative use case but also for other oncologic indications and the classification of tumors from cell-free DNA in liquid biopsies.
en
dc.format.extent
43 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Computational models
en
dc.subject
DNA sequencing
en
dc.subject
Machine learning
en
dc.subject.ddc
600 Technik, Medizin, angewandte Wissenschaften::610 Medizin und Gesundheit::616 Krankheiten
dc.title
Rapid brain tumor classification from sparse epigenomic data
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1038/s41591-024-03435-3
dcterms.bibliographicCitation.journaltitle
Nature Medicine
dcterms.bibliographicCitation.number
3
dcterms.bibliographicCitation.pagestart
840
dcterms.bibliographicCitation.pageend
848
dcterms.bibliographicCitation.volume
31
dcterms.bibliographicCitation.url
https://doi.org/10.1038/s41591-024-03435-3
refubium.affiliation
Mathematik und Informatik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1546-170X
refubium.resourceType.provider
WoS-Alert