dc.contributor.author
Miranda, I. P.
dc.contributor.author
Pankratova, M.
dc.contributor.author
Weißenhofer, Markus
dc.contributor.author
Klautau, A. B.
dc.contributor.author
Thonig, D.
dc.contributor.author
Pereiro, M.
dc.contributor.author
Sjöqvist, E.
dc.contributor.author
Delin, A.
dc.contributor.author
Katsnelson, M. I.
dc.contributor.author
Eriksson, O.
dc.contributor.author
Bergman, A.
dc.date.accessioned
2025-04-16T11:56:35Z
dc.date.available
2025-04-16T11:56:35Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/47404
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-47122
dc.description.abstract
Magnetoelasticity plays a crucial role in numerous magnetic phenomena, including magnetocalorics, magnon excitation via acoustic waves, and ultrafast demagnetization, or the Einstein–de Haas effect. Despite a long-standing discussion on anisotropy-mediated magnetoelastic interactions of relativistic origin, the exchange-mediated magnetoelastic parameters within an atomistic framework have only recently begun to be investigated. As a result, many of their behaviors and values for real materials remain poorly understood. Therefore, by using a proposed simple modification of the embedded cluster approach that reduces the computational complexity, we critically analyze the properties of exchange-mediated spin-lattice coupling parameters for elemental 3𝑑 ferromagnets (bcc Fe, fcc Ni, and fcc Co), comparing methods used for their extraction and relating their realistic values to symmetry considerations and orbitally decomposed contributions. Additionally, we investigate the effects of noncollinearity (spin temperature) and applied pressure on these parameters. For Fe, we find that single-site rotations, associated with spin temperatures around 100 K, induce significant modifications, particularly in Dzyaloshinskii-Moriya-type couplings; in contrast, such interactions in Co and Ni remain almost configuration independent. Moreover, we demonstrate a notable change in the exchange-mediated magnetoelastic constants for Fe under isotropic contraction. Finally, the conversion between atomistic, quantum-mechanically derived parameters and the phenomenological magnetoelastic theory is discussed, which can be a useful tool towards larger and more realistic dynamics simulations involving coupled subsystems.
en
dc.format.extent
22 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Electronic structure
en
dc.subject
Magnetoelastic effect
en
dc.subject
Spin-phonon coupling
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
Spin-lattice couplings in 3d ferromagnets: Analysis from first principles
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
024409
dcterms.bibliographicCitation.doi
10.1103/PhysRevMaterials.9.024409
dcterms.bibliographicCitation.journaltitle
Physical Review Materials
dcterms.bibliographicCitation.number
2
dcterms.bibliographicCitation.volume
9
dcterms.bibliographicCitation.url
https://doi.org/10.1103/PhysRevMaterials.9.024409
refubium.affiliation
Physik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2475-9953
refubium.resourceType.provider
WoS-Alert