dc.contributor.author
Mondal, Sourav
dc.contributor.author
Netz, Julia
dc.contributor.author
Hunger, David
dc.contributor.author
Suhr, Simon
dc.contributor.author
Sarkar, Biprajit
dc.contributor.author
Slageren, Joris van
dc.contributor.author
Köhn, Andreas
dc.contributor.author
Lunghi, Alessandro
dc.date.accessioned
2025-04-30T11:01:54Z
dc.date.available
2025-04-30T11:01:54Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/47308
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-47026
dc.description.abstract
Magnetic relaxation in coordination compounds is largely dominated by the interaction of the spin with phonons. Although a comprehensive understanding of spin-phonon relaxation has been achieved for mononuclear complexes, only a qualitative picture is available for polynuclear compounds. Large zero-field splitting and exchange coupling values have been empirically found to strongly suppress spin relaxation and have been used as the main guideline for designing molecular compounds with long spin lifetime, also known as single-molecule magnets, but no microscopic rationale for these observations is available. Here we fill this critical knowledge gap by providing a full first-principles description of spin-phonon relaxation in an air-stable Co(II) dimer with both large single-ion anisotropy and exchange coupling. Simulations reproduce the experimental relaxation data with excellent accuracy and provide a microscopic understanding of Orbach and Raman relaxation pathways and their dependency on exchange coupling, zero-field splitting, and molecular vibrations. Theory and numerical simulations show that increasing cluster nuclearity to just four cobalt units would lead to a complete suppression of low-temperature Raman relaxation. These results hold a general validity for polynuclear single-molecule magnets, providing a deeper understanding of their relaxation and revised strategies for their improvement.
en
dc.format.extent
10 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Exchange coupling
en
dc.subject
Magnetic properties
en
dc.subject
Quantum mechanics
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::540 Chemie::540 Chemie und zugeordnete Wissenschaften
dc.title
The Spin-Phonon Relaxation Mechanism of Single-Molecule Magnets in the Presence of Strong Exchange Coupling
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1021/acscentsci.4c02139
dcterms.bibliographicCitation.journaltitle
ACS Central Science
dcterms.bibliographicCitation.number
4
dcterms.bibliographicCitation.pagestart
550
dcterms.bibliographicCitation.pageend
559
dcterms.bibliographicCitation.volume
11
dcterms.bibliographicCitation.url
https://doi.org/10.1021/acscentsci.4c02139
refubium.affiliation
Biologie, Chemie, Pharmazie
refubium.affiliation.other
Institut für Chemie und Biochemie

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2374-7951
refubium.resourceType.provider
WoS-Alert