dc.contributor.author
Labora, Daniel Cao
dc.contributor.author
Fernández, Francisco J.
dc.contributor.author
Tojo, F. Adrián F.
dc.contributor.author
Villanueva Mariz, Carlos
dc.date.accessioned
2025-04-09T12:19:33Z
dc.date.available
2025-04-09T12:19:33Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/47254
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-46972
dc.description.abstract
When dealing with certain mathematical problems, it is sometimes necessary to show that some function induces a metric on a certain space. When this function is not a well renowned example of a distance, one has to develop very particular arguments that appeal to the concrete expression of the function in order to do so. The main purpose of this work is to provide several sufficient results ensuring that a function of two variables induces a distance on the real line, as well as some necessary conditions, together with several examples that show the applicability of these results. In particular, we show how a hypothesis about the sign of the cross partial derivative of the candidate to distance is helpful for deriving such kind of results.
en
dc.format.extent
11 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
Necessary and sufficient conditions for distances on the real line
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
20250022
dcterms.bibliographicCitation.doi
10.1515/agms-2025-0022
dcterms.bibliographicCitation.journaltitle
Analysis and Geometry in Metric Spaces
dcterms.bibliographicCitation.number
1
dcterms.bibliographicCitation.volume
13
dcterms.bibliographicCitation.url
https://doi.org/10.1515/agms-2025-0022
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2299-3274
refubium.resourceType.provider
WoS-Alert