dc.contributor.author
Hanheiser, Natalie
dc.contributor.author
Jiang, Yuhang
dc.contributor.author
Zoister, Christian
dc.contributor.author
Dimde, Mathias
dc.contributor.author
Achazi, Katharina
dc.contributor.author
Nie, Chuanxiong
dc.contributor.author
Li, Yuanyuan
dc.contributor.author
Haag, Rainer
dc.contributor.author
Singh, Abhishek Kumar
dc.date.accessioned
2025-06-27T10:22:12Z
dc.date.available
2025-06-27T10:22:12Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/47178
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-46896
dc.description.abstract
Bacterial infections and antibiotic resistance present an ever-increasing threat to human health worldwide, and medicine urgently needs new alternatives for the successful treatment of bacterial infections. Cationic surfactants have proven to be effective antibacterial agents due to their ability to disrupt bacterial membranes, inhibit biofilm formation, and combat a broad spectrum of pathogens. We employed a orthogonal click chemistry strategy for the efficient modular synthesis of six novel cationic surfactants. Our results emphasize the strong correlation between the surfactant design and its antibacterial potential. Among these six cationic surfactants we identified a prime candidate, which possessed an impressive antibacterial effect against gram-positive and gram-negative bacteria, including drug-resistant strains. We found that our surfactant can prevent biofilm formation and eradicate already existing biofilms. Cryo-TEM imaging was used to reveal the membrane-disrupting properties of the surfactant. In-vivo wound healing experiments underline the surfactants’ ability to inhibit wound infections. Cationic surfactants often face the challenge of balancing strong antibacterial activity with minimal cytotoxicity. Our strategic design and orthogonal click chemistry approach have enabled precise fine-tuning of molecular structures to achieve an optimal balance between antibacterial efficacy and biocompatibility, effectively overcoming this critical limitation.
en
dc.format.extent
10 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Cationic surfactants
en
dc.subject
Antibacterial challenges
en
dc.subject
click chemistry
en
dc.subject
Wound healing
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::540 Chemie::540 Chemie und zugeordnete Wissenschaften
dc.title
Modular Synthesis of Dendritic Oligo-Glycerol Cationic Surfactants for Enhanced Antibacterial Efficacy
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
e202425069
dcterms.bibliographicCitation.doi
10.1002/anie.202425069
dcterms.bibliographicCitation.journaltitle
Angewandte Chemie International Edition
dcterms.bibliographicCitation.number
22
dcterms.bibliographicCitation.volume
64
dcterms.bibliographicCitation.url
https://doi.org/10.1002/anie.202425069
refubium.affiliation
Biologie, Chemie, Pharmazie
refubium.affiliation.other
Institut für Chemie und Biochemie

refubium.funding
DEAL Wiley
refubium.note.author
Gefördert aus Open-Access-Mitteln der Freien Universität Berlin.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1521-3773