dc.contributor.author
Bonfà, P.
dc.contributor.author
Sharma, Sangeeta
dc.contributor.author
Dewhurst, J. K.
dc.date.accessioned
2025-05-27T09:36:44Z
dc.date.available
2025-05-27T09:36:44Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/47022
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-46737
dc.description.abstract
Mejia-Rodriguez and Trickey recently proposed a procedure for removing the explicit dependence of meta-GGA exchange-correlation energy functionals Exc on the kinetic energy density τ. We present a simple modification to this approach in which the exact Kohn-Sham τ is used as input for Exc but the functional derivative of τ with respect to the density ρ, required to calculate the potential term , is evaluated using an approximate kinetic energy density functional. This ‘half-way’ strategy ensures that the Kohn-Sham potential is a local multiplicative function (as opposed to the non-local potential of a generalized Kohn-Sham approach) while preserving the inherent non-locality of the functional itself. Electronic structure codes can be easily modified to use the new method. We validate it by quantifying the accuracy of the predicted lattice parameters, bulk moduli, magnetic moments and cohesive energies of a large set of periodic solids. An unanticipated benefit of this method is to gauge the quality of approximate kinetic energy functionals by checking if the self-consistent solution is indeed at the variational minimum.
en
dc.format.extent
6 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Superconducting electrides
en
dc.subject
Li-La alloys
en
dc.subject
Superionicity
en
dc.subject
High pressure and temperature
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::539 Moderne Physik
dc.title
Partially deorbitalized meta-GGA
dc.type
Wissenschaftlicher Artikel
dc.identifier.sepid
104667
dcterms.bibliographicCitation.articlenumber
100002
dcterms.bibliographicCitation.doi
10.1016/j.commt.2024.100002
dcterms.bibliographicCitation.journaltitle
Computational Materials Today
dcterms.bibliographicCitation.originalpublishername
Elsevier
dcterms.bibliographicCitation.originalpublisherplace
Amsterdam
dcterms.bibliographicCitation.volume
1 (2024)
dcterms.bibliographicCitation.url
https://linkinghub.elsevier.com/retrieve/pii/S2950463524000024
refubium.affiliation
Physik
refubium.affiliation.other
Institut für Theoretische Physik

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2950-4635