dc.contributor.author
Braukmüller, Ninja
dc.contributor.author
Funk, Claudia
dc.contributor.author
Abouchami, Wafa
dc.contributor.author
Pickard, Harvey
dc.contributor.author
Rehkämper, Mark
dc.contributor.author
Bragagni, Alessandro
dc.contributor.author
Galer, Stephen J. G.
dc.contributor.author
Münker, Carsten
dc.contributor.author
Becker, Harry
dc.contributor.author
Wombacher, Frank
dc.date.accessioned
2025-03-21T08:44:34Z
dc.date.available
2025-03-21T08:44:34Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/46958
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-46673
dc.description.abstract
Most chondrites are depleted in moderately volatile elements (MVE) relative to the bulk solar system composition represented by CI chondrites. Here we present high-precision isotope dilution data for 11 moderately volatile elements (S, Cu, Zn, Ga, Se, Ag, Cd, In, Sn, Te and Tl) together with Cd and Zn stable isotope compositions for carbonaceous, ordinary, enstatite and Rumuruti chondrites complemented by a literature compilation of MVE stable isotope compositions. Together these data allow new insights into the processes that led to MVE depletion in chondrites and their redistribution within parent bodies.
Moderately volatile element abundances in carbonaceous, ordinary and Rumuruti chondrites are best explained by two-component mixing between a chemically CI-like MVE-rich matrix and an MVE-poor refractory component dominated by chondrules. Chondrules are enriched in light MVE isotopes due to kinetic recondensation of a small vapor fraction initially lost from chondrules upon heating. Later, thermal metamorphism redistributed some MVE within chondrite parent bodies, which is evaluated here in a systematic way for different chondrite groups and plateau volatile elements based on related and comparatively large but unsystematic stable isotope fractionation. Compared to other chondrite classes, enstatite chondrites show less systematic MVE abundance patterns when the elements are plotted as a function of condensation temperatures. Type 3 and 4 enstatite chondrites are more MVE-rich than expected based on their low matrix fractions and are enriched in light Zn and Te isotopes relative to CI. The enrichment of light Zn and Te isotopes and high MVE abundances in type 3 and 4 enstatite chondrites relative to CI can be explained by recondensation of a larger MVE vapor fraction after chondrule formation than observed for other chondrite classes, which presumably occurred at comparatively high H2 pressures. Because MVE abundances and isotope compositions are fully consistent with chondrule formation, two-component mixing and MVE redistribution on parent bodies, we refute partial condensation from a hot solar nebula as the cause for MVE depletion in chondrite formation regions of the protoplanetary disk.
en
dc.format.extent
20 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Moderately volatile elements
en
dc.subject
Cd and Zn stable isotope composition
en
dc.subject
Chondrule formation
en
dc.subject
Chondrite parent body processes
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::550 Geowissenschaften, Geologie::550 Geowissenschaften
dc.title
Moderately volatile elements in chondrites record chondrule formation, two-component mixing and redistribution on parent bodies
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1016/j.gca.2025.02.001
dcterms.bibliographicCitation.journaltitle
Geochimica et Cosmochimica Acta
dcterms.bibliographicCitation.pagestart
43
dcterms.bibliographicCitation.pageend
62
dcterms.bibliographicCitation.volume
393
dcterms.bibliographicCitation.url
https://doi.org/10.1016/j.gca.2025.02.001
refubium.affiliation
Geowissenschaften
refubium.affiliation.other
Institut für Geologische Wissenschaften / Fachrichtung Geochemie, Hydrogeologie, Mineralogie

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1872-9533
refubium.resourceType.provider
WoS-Alert