dc.contributor.author
Denzler, Janek
dc.contributor.author
Mele, Antonio Anna
dc.contributor.author
Derbyshire, Ellen
dc.contributor.author
Guaita, Tommaso
dc.contributor.author
Eisert, Jens
dc.date.accessioned
2025-03-26T11:16:32Z
dc.date.available
2025-03-26T11:16:32Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/46897
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-46612
dc.description.abstract
Schemes of classical shadows have been developed to facilitate the readout of digital quantum devices, but similar tools for analog quantum simulators are scarce and experimentally impractical. In this Letter, we provide a measurement scheme for fermionic quantum devices that estimates second and fourth order correlation functions by means of free fermionic, translationally invariant evolutions—or quenches—and measurements in the mode occupation number basis. We precisely characterize what correlation functions can be recovered and equip the estimates with rigorous bounds on sample complexities, a particularly important feature in light of the difficulty of getting good statistics in reasonable experimental platforms, with measurements being slow. Finally, we demonstrate how our procedure can be approximately implemented with just nearest-neighbor, translationally invariant hopping quenches, a very plausible procedure under current experimental requirements and requiring only random time evolution with respect to a single native Hamiltonian. On a conceptual level, this Letter brings the idea of classical shadows to the realm of large scale analog quantum simulators.
en
dc.format.extent
27 Seiten (Manuskriptversion + Appendix)
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject
Cold atoms & matter waves
en
dc.subject
Quantum correlations in quantum information
en
dc.subject
Quantum information theory
en
dc.subject
Quantum parameter estimation
en
dc.subject
Quantum simulation
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::539 Moderne Physik
dc.title
Learning Fermionic Correlations by Evolving with Random Translationally Invariant Hamiltonians
dc.type
Wissenschaftlicher Artikel
dc.identifier.sepid
104438
dcterms.bibliographicCitation.articlenumber
240604
dcterms.bibliographicCitation.doi
10.1103/PhysRevLett.133.240604
dcterms.bibliographicCitation.journaltitle
Physical Review Letters
dcterms.bibliographicCitation.number
24
dcterms.bibliographicCitation.originalpublishername
American Physical Society
dcterms.bibliographicCitation.originalpublisherplace
College Park, MD.
dcterms.bibliographicCitation.volume
133 (2024)
dcterms.bibliographicCitation.url
https://link.aps.org/doi/10.1103/PhysRevLett.133.240604
dcterms.rightsHolder.url
https://journals.aps.org/authors/editorial-policies-open-access
refubium.affiliation
Physik
refubium.affiliation.other
Institut für Theoretische Physik

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
0031-9007
dcterms.isPartOf.eissn
1079-7114