dc.contributor.author
Bekisch, Artur
dc.contributor.author
Skadell, Karl
dc.contributor.author
Ast, Johannes
dc.contributor.author
Schulz, Matthias
dc.contributor.author
Weidl, Roland
dc.contributor.author
Christiansen, Silke
dc.contributor.author
Stelter, Michael
dc.date.accessioned
2025-04-08T10:37:46Z
dc.date.available
2025-04-08T10:37:46Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/46743
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-46457
dc.description.abstract
In this study, it is revealed that carbon-free gas diffusion electrodes (CF-GDEs) with macropore sizes outperform the a carbon-based GDE (GDEref). These CF-GDEs exhibit notably reduced overpotentials and increased electrochemical stability. By combining three distinct macropore-sized substrates, coated with MnOx and hydrophobized with polytetrafluorethylen, a range of CF-GDEs with distinct porosity gradients is designed. In the results, the pivotal role of substrate layers and their hydrophilic/hydrophobic attributes in steering the formation of the electrolyte thin film are unveiled. Specifically, one CF-GDE shows a reduction by one-third of the ηOER (0.24 V) compared to GDEref at 10 mA cm−2. Noteworthy, this CF-GDE also displays excellent long-term stability without degradation, which is a common issue with carbon-based GDEs due to carbon corrosion. Impressively, the stability measurement conditions the active catalyst sites of the CF-GDE and leads to the formation of NiOx, Ni6MnO8, and NiMn layered double hydroxides. This results in a doubling of the current densities.
en
dc.format.extent
15 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
carbon corrosions
en
dc.subject
gas diffusion electrodes
en
dc.subject
manganese oxides
en
dc.subject
nickel foams
en
dc.subject
oxygen evolution reactions
en
dc.subject
oxygen reduction reactions
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
Alternative Gas Diffusion Electrode Designs: Influence of Porosity Gradients on the Electrochemical Activity
dc.type
Wissenschaftlicher Artikel
dc.identifier.sepid
104052
dcterms.bibliographicCitation.articlenumber
2400202
dcterms.bibliographicCitation.doi
10.1002/aesr.202400202
dcterms.bibliographicCitation.journaltitle
Advanced Energy and Sustainability Research
dcterms.bibliographicCitation.number
4
dcterms.bibliographicCitation.originalpublishername
Wiley-VCH
dcterms.bibliographicCitation.originalpublisherplace
Weinheim
dcterms.bibliographicCitation.volume
6 (2025)
dcterms.bibliographicCitation.url
https://onlinelibrary.wiley.com/doi/10.1002/aesr.202400202
refubium.affiliation
Physik
refubium.affiliation.other
Institut für Experimentalphysik

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
2699-9412
dcterms.isPartOf.eissn
2699-9412