dc.contributor.author
Esders, Malte
dc.contributor.author
Schnake, Thomas
dc.contributor.author
Lederer, Jonas
dc.contributor.author
Kabylda, Adil
dc.contributor.author
Montavon, Grégoire
dc.contributor.author
Tkatchenko, Alexandre
dc.contributor.author
Müller, Klaus-Robert
dc.date.accessioned
2025-01-30T06:22:43Z
dc.date.available
2025-01-30T06:22:43Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/46433
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-46146
dc.description.abstract
While machine learning (ML) models have been able to achieve unprecedented accuracies across various prediction tasks in quantum chemistry, it is now apparent that accuracy on a test set alone is not a guarantee for robust chemical modeling such as stable molecular dynamics (MD). To go beyond accuracy, we use explainable artificial intelligence (XAI) techniques to develop a general analysis framework for atomic interactions and apply it to the SchNet and PaiNN neural network models. We compare these interactions with a set of fundamental chemical principles to understand how well the models have learned the underlying physicochemical concepts from the data. We focus on the strength of the interactions for different atomic species, how predictions for intensive and extensive quantum molecular properties are made, and analyze the decay and many-body nature of the interactions with interatomic distance. Models that deviate too far from known physical principles produce unstable MD trajectories, even when they have very high energy and force prediction accuracy. We also suggest further improvements to the ML architectures to better account for the polynomial decay of atomic interactions.
en
dc.format.extent
16 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Mathematical methods
en
dc.subject
Molecular interactions
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::540 Chemie::540 Chemie und zugeordnete Wissenschaften
dc.title
Analyzing Atomic Interactions in Molecules as Learned by Neural Networks
dc.type
Wissenschaftlicher Artikel
dc.date.updated
2025-01-30T04:01:58Z
dcterms.bibliographicCitation.doi
10.1021/acs.jctc.4c01424
dcterms.bibliographicCitation.journaltitle
Journal of Chemical Theory and Computation
dcterms.bibliographicCitation.number
2
dcterms.bibliographicCitation.pagestart
714
dcterms.bibliographicCitation.pageend
729
dcterms.bibliographicCitation.volume
21
dcterms.bibliographicCitation.url
https://doi.org/10.1021/acs.jctc.4c01424
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Informatik
![Dieser Normdateneintrag wurde von einer Benutzerin oder einem Benutzer als gültig bestätigt.](/cache_0fdaa16ecf2e120b3856a5a937c7ad56/themes/FuCD/images/authority_control/invisible.gif)
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
1549-9618
dcterms.isPartOf.eissn
1549-9626
refubium.resourceType.provider
DeepGreen