dc.contributor.author
Hussain, Sabir
dc.contributor.author
Khaliq, Rida
dc.contributor.author
Rafeeq, Sobia
dc.contributor.author
Ali, Azhar
dc.contributor.author
Ro, Jongsuk
dc.date.accessioned
2025-01-14T12:18:40Z
dc.date.available
2025-01-14T12:18:40Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/46238
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-45950
dc.description.abstract
Integral inequalities and the Mittag-Leffler function play a crucial role in many branches of mathematics and applications, including fractional calculus, mathematical physics, and engineering. In this paper, we introduced an extended generalized Mittag-Leffler function that involved several well-known Mittag-Leffler functions as a special case. We also introduced an associated generalized fractional integral to obtain some estimates for fractional integral inequalities of the Hermite-Hadamard and Hermite-Hadamard-Fejér types. This article offered several analytical tools that will be useful to anyone working in this field. To demonstrate the veracity of our findings, we offered a few numerical and graphical examples. A few applications of modified Bessel functions and unitarily invariant norm of matrices were also given.
en
dc.format.extent
27 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Mittag-Leffler functions and generalizations
en
dc.subject
Hermite-Hadamard type inequalities
en
dc.subject
fractional integrals
en
dc.subject
inequalities involving matrices
en
dc.subject
modified Bessel functions
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
Some fractional integral inequalities involving extended Mittag-Leffler function with applications
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.3934/math.20241689
dcterms.bibliographicCitation.journaltitle
AIMS Mathematics
dcterms.bibliographicCitation.number
12
dcterms.bibliographicCitation.pagestart
35599
dcterms.bibliographicCitation.pageend
35625
dcterms.bibliographicCitation.volume
9
dcterms.bibliographicCitation.url
https://doi.org/10.3934/math.20241689
refubium.affiliation
Mathematik und Informatik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2473-6988
refubium.resourceType.provider
WoS-Alert