dc.contributor.author
Bley, Florian
dc.contributor.author
Lapuschkin, Sebastian
dc.contributor.author
Samek, Wojciech
dc.contributor.author
Montavon, Grégoire
dc.date.accessioned
2025-01-13T12:38:47Z
dc.date.available
2025-01-13T12:38:47Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/46225
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-45937
dc.description.abstract
Explainable AI has brought transparency to complex ML black boxes, enabling us, in particular, to identify which features these models use to make predictions. So far, the question of how to explain predictive uncertainty, i.e., why a model ‘doubts’, has been scarcely studied. Our investigation reveals that predictive uncertainty is dominated by second-order effects, involving single features or product interactions between them. We contribute a new method for explaining predictive uncertainty based on these second-order effects. Computationally, our method reduces to a simple covariance computation over a collection of first-order explanations. Our method is generally applicable, allowing for turning common attribution techniques (LRP, Gradient x Input, etc.) into powerful second-order uncertainty explainers, which we call CovLRP, CovGI, etc. The accuracy of the explanations our method produces is demonstrated through systematic quantitative evaluations, and the overall usefulness of our method is demonstrated through two practical showcases.
en
dc.format.extent
10 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Explainable AI
en
dc.subject
Predictive uncertainty
en
dc.subject
Ensemble models
en
dc.subject
Second-order attribution
en
dc.subject.ddc
000 Informatik, Informationswissenschaft, allgemeine Werke::000 Informatik, Wissen, Systeme::004 Datenverarbeitung; Informatik
dc.title
Explaining predictive uncertainty by exposing second-order effects
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
111171
dcterms.bibliographicCitation.doi
10.1016/j.patcog.2024.111171
dcterms.bibliographicCitation.journaltitle
Pattern Recognition
dcterms.bibliographicCitation.volume
160
dcterms.bibliographicCitation.url
https://doi.org/10.1016/j.patcog.2024.111171
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Informatik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1873-5142
refubium.resourceType.provider
WoS-Alert