dc.contributor.author
Amoros, M. Cano
dc.contributor.author
Nettelmann, N.
dc.contributor.author
Tosi, N.
dc.contributor.author
Baumeister, Philipp
dc.contributor.author
Rauer, Heike
dc.date.accessioned
2025-01-13T10:31:22Z
dc.date.available
2025-01-13T10:31:22Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/46214
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-45926
dc.description.abstract
Context. Demixing properties of major planetary constituents influence the interior structure and evolution of planets. Comparing experimental and computational data on the miscibility of hydrogen and water to adiabatic profiles suggests that phase separation between these two components occurs in the ice giants Uranus and Neptune.
Aims. We aim to predict the atmospheric water abundance and transition pressure between the water-poor outer envelope and the water-rich deep interior in Uranus and Neptune.
Methods. We constructed seven H2–H2O phase diagrams from the available experimental and computational data. We computed interior adiabatic structure models and compared these to the phase diagrams to infer whether demixing occurred.
Results. We obtain a strong water depletion in the top layer due to the rain-out of water and find upper limits on the atmospheric water-mass fraction Zatm of 0.21 for Uranus and 0.16 for Neptune. The transition from the water-poor to the water-rich layer is sharp and occurs at pressures PZ between 4 and 11 GPa. Using these constraints on Zatm and PZ, we find that the observed gravitational harmonics J2 and J4 can be reproduced if PZ ≳ 10 GPa in Uranus and ≳5 GPa in Neptune, and if the deep interior has a high primordial water-mass fraction of 0.8, unless rocks are also present. The agreement with J4 is improved if rocks are confined deeper than PZ, for instance, below a rock cloud level at 2000 K (20–30 GPa).
Conclusions. These findings confirm classical few-layer models and suggest that a layered structure may result from a combination of primordial mass accretion and subsequent phase separation. Reduced observational uncertainty in J4 and its dynamic contribution, atmospheric water abundance measurements from the Uranus Orbiter and Probe (UOP) or a Neptune mission, and better understanding of the mixing behaviour of constituents are needed to constrain the interiors of ice giants.
en
dc.format.extent
14 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
planets and satellites: composition
en
dc.subject
planets and satellites: formation
en
dc.subject
planets and satellites: interiors
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::520 Astronomie::520 Astronomie und zugeordnete Wissenschaften
dc.title
H2–H2O demixing in Uranus and Neptune: Adiabatic structure models
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
A152
dcterms.bibliographicCitation.doi
10.1051/0004-6361/202452148
dcterms.bibliographicCitation.journaltitle
Astronomy & Astrophysics
dcterms.bibliographicCitation.volume
692
dcterms.bibliographicCitation.url
https://doi.org/10.1051/0004-6361/202452148
refubium.affiliation
Geowissenschaften
refubium.affiliation.other
Institut für Geologische Wissenschaften / Fachrichtung Planetologie und Fernerkundung
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1432-0746
refubium.resourceType.provider
WoS-Alert