dc.contributor.author
Gaskin, Thomas
dc.contributor.author
Conrad, Tim
dc.contributor.author
Pavliotis, Grigorios A.
dc.contributor.author
Schütte, Christof
dc.date.accessioned
2024-12-05T12:22:47Z
dc.date.available
2024-12-05T12:22:47Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/45897
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-45610
dc.description.abstract
The recent COVID-19 pandemic has thrown the importance of accurately forecasting contagion dynamics and learning infection parameters into sharp focus. At the same time, effective policy-making requires knowledge of the uncertainty on such predictions, in order, for instance, to be able to ready hospitals and intensive care units for a worst-case scenario without needlessly wasting resources. In this work, we apply a novel and powerful computational method to the problem of learning probability densities on contagion parameters and providing uncertainty quantification for pandemic projections. Using a neural network, we calibrate an ODE model to data of the spread of COVID-19 in Berlin in 2020, achieving both a significantly more accurate calibration and prediction than Markov-Chain Monte Carlo (MCMC)-based sampling schemes. The uncertainties on our predictions provide meaningful confidence intervals e.g. on infection figures and hospitalisation rates, while training and running the neural scheme takes minutes where MCMC takes hours. We show convergence of our method to the true posterior on a simplified SIR model of epidemics, and also demonstrate our method’s learning capabilities on a reduced dataset, where a complex model is learned from a small number of compartments for which data is available.
en
dc.format.extent
16 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Neural networks
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
Neural parameter calibration and uncertainty quantification for epidemic forecasting
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
e0306704
dcterms.bibliographicCitation.doi
10.1371/journal.pone.0306704
dcterms.bibliographicCitation.journaltitle
PLoS ONE
dcterms.bibliographicCitation.number
10
dcterms.bibliographicCitation.volume
19
dcterms.bibliographicCitation.url
https://doi.org/10.1371/journal.pone.0306704
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1932-6203
refubium.resourceType.provider
WoS-Alert