dc.contributor.author
Polzin, Robert M.
dc.contributor.author
Klebanov, Ilja
dc.contributor.author
Nüsken, Nikolas
dc.contributor.author
Koltai, Péter
dc.date.accessioned
2024-10-31T07:52:44Z
dc.date.available
2024-10-31T07:52:44Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/45445
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-45157
dc.description.abstract
We analyze connections between two low rank modeling approaches from the last decade for treating dynamical data. The first one is the coherence problem (or coherent set approach), where groups of states are sought that evolve under the action of a stochastic transition matrix in a way maximally distinguishable from other groups. The second one is a low rank factorization approach for stochastic matrices, called direct Bayesian model reduction (DBMR), which estimates the low rank factors directly from observed data. We show that DBMR results in a low rank model that is a projection of the full model, and exploit this insight to infer bounds on a quantitative measure of coherence within the reduced model. Both approaches can be formulated as optimization problems, and we also prove a bound between their respective objectives. On a broader scope, this work relates the two classical loss functions of nonnegative matrix factorization, namely the Frobenius norm and the generalized Kullback–Leibler divergence, and suggests new links between likelihood-based and projection-based estimation of probabilistic models.
en
dc.format.extent
44 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Low rank modeling
en
dc.subject
Coherent sets
en
dc.subject
Maximum likelihood
en
dc.subject
Nonnegative matrix factorization
en
dc.subject
Markov state model
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
Coherent Set Identification Via Direct Low Rank Maximum Likelihood Estimation
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
2
dcterms.bibliographicCitation.doi
10.1007/s00332-024-10091-x
dcterms.bibliographicCitation.journaltitle
Journal of Nonlinear Science
dcterms.bibliographicCitation.number
1
dcterms.bibliographicCitation.volume
35
dcterms.bibliographicCitation.url
https://doi.org/10.1007/s00332-024-10091-x
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1432-1467