dc.contributor.author
Mondal, Indranil
dc.contributor.author
Hausmann, J. Niklas
dc.contributor.author
Mebs, Stefan
dc.contributor.author
Kalra, Shweta
dc.contributor.author
Vijaykumar, Gonela
dc.contributor.author
Laun, Konstantin
dc.contributor.author
Zebger, Ingo
dc.contributor.author
Selve, Sören
dc.contributor.author
Dau, Holger
dc.contributor.author
Driess, Matthias
dc.contributor.author
Menezes, Prashanth W
dc.date.accessioned
2024-10-16T12:21:31Z
dc.date.available
2024-10-16T12:21:31Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/45290
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-45002
dc.description.abstract
The urgent need for efficient oxygen evolution reaction (OER) catalysts has led to the development and publication of many heterostructured catalysts. The application of such catalysts with multiple phases tremendously increases the material design dimensions, and numerous interface‐related effects can tune the OER performance. In this regard, multiple of these heterostructured electrodes show remarkable OER activities. However, it is not clear if these carefully designed interfaces remain under prolonged OER conditions. Herein, a molecular approach is used to synthesize four different nickel‐iron phosphide (heterostructured) materials and deposit them on fluorine‐doped tin oxide and nickel foam electrodes. The OER performance of the eight electrodes and the reconstruction of the four materials is investigated by in‐situ spectroscopy after one day of operation, enabled by a freeze‐quench approach. The most active electrode is also applied under industrial OER conditions and for the value‐added oxidation of alcohols to ketones. Before catalysis, this electrode comprises crystalline 4 nm nickel phosphide particles on an amorphous iron phosphide matrix. However, after 24 h, a homogenous nickel‐iron oxyhydroxide phase has formed. This work questions to which extent the design of heterostructures is a suitable strategy for non‐noble metal OER catalysis.
en
dc.format.extent
11 Seiten
dc.rights
This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
dc.rights.uri
https://creativecommons.org/licenses/by-nc/4.0/
dc.subject
nickel iron oxyhydroxides
en
dc.subject
industrial OER conditions
en
dc.subject
precatalyst reconstruction
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::540 Chemie::541 Physikalische Chemie
dc.title
The (In)Stability of Heterostructures During the Oxygen Evolution Reaction
dc.type
Wissenschaftlicher Artikel
dc.date.updated
2024-10-15T18:02:40Z
dcterms.bibliographicCitation.articlenumber
2400809
dcterms.bibliographicCitation.doi
10.1002/aenm.202400809
dcterms.bibliographicCitation.journaltitle
Advanced Energy Materials
dcterms.bibliographicCitation.number
33
dcterms.bibliographicCitation.volume
14
dcterms.bibliographicCitation.url
https://doi.org/10.1002/aenm.202400809
refubium.affiliation
Physik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
1614-6832
dcterms.isPartOf.eissn
1614-6840
refubium.resourceType.provider
DeepGreen