dc.contributor.author
Brandenburg, Marie-Charlotte
dc.contributor.author
Haase, Christian
dc.contributor.author
Tran, Ngoc Mai
dc.date.accessioned
2024-10-10T05:49:33Z
dc.date.available
2024-10-10T05:49:33Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/45213
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-44925
dc.description.abstract
We show that a competitive equilibrium always exists in combinatorial auctions with anonymous graphical valuations and pricing, using discrete geometry. This is an intuitive and easy-to-construct class of valuations that can model both complementarity and substitutes, and to our knowledge, it is the first class besides gross substitutes that have guaranteed competitive equilibrium. We prove through counter-examples that our result is tight, and we give explicit algorithms for constructing competitive pricing vectors. We also give extensions to multi-unit combinatorial auctions (also known as product-mix auctions). Combined with theorems on graphical valuations and pricing equilibrium of Candogan, Ozdagar and Parrilo, our results indicate that quadratic pricing is a highly practical method to run combinatorial auctions.
en
dc.format.extent
30 Seiten
dc.rights
This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Competitive equilibrium
en
dc.subject
Graphical pricing
en
dc.subject
Lattice polytopes
en
dc.subject
Combinatorial auctions
en
dc.subject
Regular subdivisions
en
dc.subject
Correlation polytope
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
Competitive Equilibrium Always Exists for Combinatorial Auctions with Graphical Pricing Schemes
dc.type
Wissenschaftlicher Artikel
dc.date.updated
2024-10-05T07:47:59Z
dcterms.bibliographicCitation.doi
10.1007/s44007-022-00038-7
dcterms.bibliographicCitation.journaltitle
La Matematica
dcterms.bibliographicCitation.number
1
dcterms.bibliographicCitation.originalpublishername
Springer US
dcterms.bibliographicCitation.pagestart
1
dcterms.bibliographicCitation.pageend
30
dcterms.bibliographicCitation.volume
2
dcterms.bibliographicCitation.url
https://doi.org/10.1007/s44007-022-00038-7
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2730-9657
refubium.resourceType.provider
DeepGreen